Skip to main content
Log in

Conservative bounds on Rayleigh-Bénard convection with mixed thermal boundary conditions

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using the background field variational method developed by Doering and Constantin, we obtain upper bounds on heat transport in Rayleigh-Bénard convection assuming mixed (Robin) thermal conditions of arbitrary Biot number η at the fluid boundaries, ranging from the fixed temperature (perfectly conducting, η = 0) to the fixed flux (perfectly insulating, η = ) extremes. Solving the associated Euler-Lagrange equations, we numerically find optimal bounds on the averaged convective heat transport, measured by the Nusselt number \(\mathit{Nu}\), over a restricted one-parameter class of piecewise linear background temperature profiles, and compare these to conservative analytical bounds derived using elementary functional estimates. We find that analytical estimates fully capture the scaling behaviour of the semi-optimal numerical bounds, including a clear transition from fixed temperature to fixed flux behaviour observed for any small nonzero η as the usual Rayleigh number \(\mathit{Ra}\) increases, suggesting that in the strong driving limit, all imperfectly conducting boundaries effectively act as insulators. The overall bounds, optimized over piecewise linear backgrounds, are \(\mathit{Nu}\) 0.045 \(\mathit{Ra}^{1/2}\) in the fixed temperature case η = 0, and \(\mathit{Nu}\) 0.078 \(\mathit{Ra}^{1/2}\) in the large-\(\mathit{Ra}\) limit in all other cases, 0 < η .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.P. Kadanoff, Phys. Today 54, 34 (2001)

    Article  Google Scholar 

  2. G. Ahlers, Physics 2, 74 (2009)

    Article  Google Scholar 

  3. G. Ahlers, S. Grossmann, D. Lohse, Rev. Mod. Phys. 81, 503 (2009)

    Article  ADS  Google Scholar 

  4. M.V.R. Malkus, Proc. Roy. Soc. Lond. A 225, 196 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. L.N. Howard, J. Fluid Mech. 17, 405 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. L.N. Howard, Ann. Rev. Fluid Mech. 4, 473 (1972)

    Article  ADS  Google Scholar 

  7. F.H. Busse, J. Fluid Mech. 37, 457 (1969)

    Article  MATH  ADS  Google Scholar 

  8. F.H. Busse, Adv. Appl. Mech. 18, 77 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. N.K. Vitanov, Eur. Phys. J. B 73, 265 (2010)

    Article  MATH  ADS  Google Scholar 

  10. E. Hopf, Math. Ann. 117, 764 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  11. C.R. Doering, P. Constantin, Phys. Rev. Lett. 69, 1648 (1992)

    Article  ADS  Google Scholar 

  12. C.R. Doering, P. Constantin, Phys. Rev. E 49, 4087 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  13. C.R. Doering, P. Constantin, Phys. Rev. E 53, 5957 (1996)

    Article  ADS  Google Scholar 

  14. R.R. Kerswell, Physica D 121, 175 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. R.R. Kerswell, Phys. Fluids 13, 192 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.C. Plasting, G.R. Ierley, J. Fluid Mech. 542, 343 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. P. Constantin, C.R. Doering, Physica D 82, 221 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Otero, Ph.D. thesis, University of Michigan, 2002

  19. S.C. Plasting, R.R. Kerswell, J. Fluid Mech. 477, 363 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. G.R. Ierley, R.R. Kerswell, S.C. Plasting, J. Fluid Mech. 560, 159 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. C.R. Doering, P. Constantin, J. Math. Phys. 42, 784 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. C.R. Doering, P. Constantin, J. Fluid Mech. 376, 263 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. J. Otero, L.A. Dontcheva, H. Johnston, R.A. Worthing, A. Kurganov, G. Petrova, C.R. Doering, J. Fluid Mech. 500, 263 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. R. Nicodemus, S. Grossmann, M. Holthaus, Physica D 101, 178 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. J. Otero, R.W. Wittenberg, R.A. Worthing, C.R. Doering, J. Fluid Mech. 473, 191 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. S. Chaumat, B. Castaing, F. Chillà, Rayleigh-Bénard cells: influence of the plates’ properties, in Advances in Turbulence IX, Proceedings of the Ninth European Turbulence Conference, edited by I.P. Castro, P.E. Hancock, T.G. Thomas (CIMNe, Barcelona, 2002), pp. 159–162

  27. F. Chillà, M. Rastello, S. Chaumat, B. Castaing, Phys. Fluids 16, 2452 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  28. E. Brown, A. Nikolaenko, D. Funfschilling, G. Ahlers, Phys. Fluids 17, 075108 (2005)

    Article  ADS  Google Scholar 

  29. R. Verzicco, Phys. Fluids 16, 1965 (2004)

    Article  ADS  Google Scholar 

  30. J.J. Niemela, K.R. Sreenivasan, J. Fluid Mech. 557, 411 (2006)

    Article  MATH  ADS  Google Scholar 

  31. G. Ahlers, D. Funfschilling, E. Bodenschatz, New J. Phys. 11, 123001 (2009)

    Article  ADS  Google Scholar 

  32. H. Johnston, C.R. Doering, Phys. Rev. Lett. 102, 064501 (2009)

    Article  ADS  Google Scholar 

  33. R. Verzicco, K.R. Sreenivasan, J. Fluid Mech. 595, 203 (2008)

    Article  MATH  ADS  Google Scholar 

  34. R.J.A.M. Stevens, R. Verzicco, D. Lohse, J. Fluid Mech. 643, 495 (2010)

    Article  MATH  Google Scholar 

  35. R.W. Wittenberg (2010), to appear in J. Fluid Mech.

  36. D.D. Joseph, Stability of Fluid Motions (Springer-Verlag, New York, 1976)

  37. D.T.J. Hurle, E. Jakeman, E.R. Pike, Proc. R. Soc. London A 296, 469 (1967)

    Article  ADS  Google Scholar 

  38. J. Gao, Master’s thesis, Simon Fraser University, 2006

  39. A. Pellew, R.V. Southwell, Proc. R. Soc. A 176, 312 (1940)

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Nicodemus, S. Grossmann, M. Holthaus, J. Fluid Mech. 363, 281 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. E.M. Sparrow, R.J. Goldstein, V.K. Jonsson, J. Fluid Mech. 18, 513 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. S.K. Chan, Stud. Appl. Math. 50, 13 (1971)

    MATH  Google Scholar 

  43. P. Constantin, C.R. Doering, J. Stat. Phys. 94, 159 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. C.R. Doering, F. Otto, M.G. Reznikoff, J. Fluid Mech. 560, 229 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Wittenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittenberg, R., Gao, J. Conservative bounds on Rayleigh-Bénard convection with mixed thermal boundary conditions. Eur. Phys. J. B 76, 565–580 (2010). https://doi.org/10.1140/epjb/e2010-00227-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00227-x

Keywords

Navigation