Skip to main content
Log in

Electronic transport for a crossed graphene nanoribbon junction with and without doping

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The electronic transport property for a crossed junction of graphene nanoribbons with and without impurity doping is investigated numerically by a fully self-consistent non-equilibrium Green’s function method combined with density functional theory. It is demonstrated that the transport property of the junction depends sensitively on both the dopant positions and the geometry of junction. Specifically, the I-V characteristics of the junction with either nitrogen- or boron-doped stems always show metallic behavior. However, the current strongly depends on the doping atomic species and sites, but slightly depends on the geometry of junction under small bias voltage. The findings here may be important in the design of graphene-based electronic devices for realizing on/off states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  3. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  4. D.A. Abanin, P.A. Lee, L.S. Levitov, Phys. Rev. Lett. 96, 176803 (2006)

    Article  ADS  Google Scholar 

  5. F. Sols, F. Guinea, A.H.C. Neto, Phys. Rev. Lett. 99, 166803 (2007)

    Article  ADS  Google Scholar 

  6. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  7. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  8. V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)

    Article  ADS  Google Scholar 

  9. C. Uthaisar, V. Barone, J.E. Peralta, J. Appl. Phys. 106, 113715 (2009)

    Article  ADS  Google Scholar 

  10. Z.F. Wang, Q. Li, Q.W. Shi, X. Wang, J.G. Hou, H. Zheng, J. Chen, Appl. Phys. Lett. 92, 133119 (2008)

    Article  ADS  Google Scholar 

  11. Z.Z. Zhang, K. Chang, K.S. Chan, Appl. Phys. Lett. 93, 062106 (2008)

    Article  ADS  Google Scholar 

  12. Y.P. Chen, Y.E. Xie, X.H. Yan, J. Appl. Phys. 103, 063711 (2008)

    Article  ADS  Google Scholar 

  13. H. Li, L. Wang, Z. Lan, Y. Zheng, Phys. Rev. B 79, 155429 (2009)

    Article  ADS  Google Scholar 

  14. F.O. Yang, J. Xiao, R. Guo, H. Zhang, H. Xu, Nanotechnology 20, 055202 (2009)

    Article  ADS  Google Scholar 

  15. S. Weingart, C. Bock, U. Kunze, F. Speck, T. Seyller, L. Ley, Appl. Phys. Lett. 95, 262101 (2009)

    Article  ADS  Google Scholar 

  16. B. Wang, J. Wang, H. Guo, Phys. Rev. B 79, 165417 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Markussen, A.-P. Jauho, M. Brandbyge, Phys. Rev. Lett. 103, 055502 (2009)

    Article  ADS  Google Scholar 

  18. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  19. B. Huang, Q. Yan, G. Zhou, J. Wu, B.-L. Gu, W. Duana, F. Liu, Appl. Phys. Lett. 91, 253122 (2007)

    Article  ADS  Google Scholar 

  20. N. Gorjizadeh, A.A. Farajian, K. Esfarjani, Y. Kawazoe, Phys. Rev. B 78, 155427 (2008)

    Article  ADS  Google Scholar 

  21. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  22. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  23. R. Landauer, IBMJ. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  24. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  25. Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Nano Lett. 7, 1469 (2007)

    Article  ADS  Google Scholar 

  26. D.A. Areshkin, D. Gunlycke, C.T. White, Nano Lett. 7, 204 (2007)

    Article  ADS  Google Scholar 

  27. N.M.R. Peres, A.H.C. Neto, F. Guinea, Phys. Rev. B 73, 195411 (2006)

    Article  ADS  Google Scholar 

  28. J.U. Nöckel, Phys. Rev. B 46, 15348 (1992)

    Article  ADS  Google Scholar 

  29. M.L.L. de Guevara, P.A. Orellana, Phys. Rev. B 73, 205303 (2006)

    Article  ADS  Google Scholar 

  30. K. Wakabayashi, M. Sigrist, Phys. Rev. Lett. 84, 3390 (2000)

    Article  ADS  Google Scholar 

  31. F. Guinea, J.A. Vergés, Phys. Rev. B 35, 979 (1987)

    Article  ADS  Google Scholar 

  32. J.L. D’Amato, H.M. Pastawski, J.F. Weisz, Phys. Rev. B 39, 3554 (1989)

    Article  ADS  Google Scholar 

  33. L.E.F. Foa Torres, H.M. Pastawski, E. Medina, Europhys. Lett. 73, 164 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Liao, W., Zhou, B. et al. Electronic transport for a crossed graphene nanoribbon junction with and without doping. Eur. Phys. J. B 76, 421–425 (2010). https://doi.org/10.1140/epjb/e2010-00181-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00181-7

Keywords

Navigation