Skip to main content
Log in

Electronic Properties of the Interface Between Metallic Doped Zigzag Graphene and Pristine Graphene Nanoribbons

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The electronic properties of the interface between metallic doped zigzag graphene nanoribbons and perfect graphene nanoribbons are investigated. The density functional based tight-binding approach and a non-equilibrium Green function method are employed for our calculations. The atoms of Ni, Co, and Fe are used as doping atoms. The graphs of current–voltage, density of states, electron density, transmission spectrum, and rectification ratio are obtained. The results show that the bond lengths around the atoms of Ni, Co, and Fe are increased. Moreover, it is observed that for the graphene-based nanodevice the curves of current–voltage are linear and symmetric when no impurity exists and with the effect of impurities the curves are non-linear and asymmetric. While Ni, Co, and Fe impurities are applied into the systems we found that the maximum electron densities are located around the impurities of Ni and the current is decreased. The density of states and transmission spectrum are also examined for different systems. It is found that for certain amount of energies some resonances occur for the current, and the atoms at the edge of nanoribbon are mostly responsible for the transfer of the electrons. The obtained results can be of interest for the construction of nanoelectronic devices and can have practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Dragoman, M. Dragoman, R. Plana, J. Appl. Phys. 108, 084316 (2010)

    Article  Google Scholar 

  2. X.Q. Deng, Z.H. Zhang, G.P. Tang, Z.Q. Fan, C.H. Yang, Carbon 66, 646 (2014)

    Article  CAS  Google Scholar 

  3. A.M. Song, M. Missous, P. Omling, A.R. Peaker, L. Samuelson, W. Seifert, Appl. Phys. Lett 83, 1881 (2003)

    Article  CAS  Google Scholar 

  4. R. Fleischmann, T. Geisel, Phys. Rev. Lett 89, 016804 (2002)

    Article  Google Scholar 

  5. K. Choi, G. Ryu, F. Yesilkoy, A. Chryssis, N. Goldsman, M. Dagenais, M. Peckerar, J. Vac. Sci. Technol. B 28, 6050 (2010)

    Google Scholar 

  6. M. Suda, Bull. Chem. Soc. Jpn. 91, 19–28 (2018)

    Article  CAS  Google Scholar 

  7. P. Schulz, D. Cahen, A. Kahn, Chem. Rev. 119(5), 3349–3417 (2019)

    Article  CAS  Google Scholar 

  8. H. Pan, S. Zhu, L. Mao, J. Inorg. Organomet. Polym. 25, 179–188 (2015)

    Article  CAS  Google Scholar 

  9. Y. An, K. Wang, Z. Yang, Z. Liu, G. Jia, Z. Jiao, T. Wang, G. Xu, Org. Electron. 17, 262 (2015)

    Article  CAS  Google Scholar 

  10. F. Al-Dirini, F.M. Hossain, A. Nirmalathas, E. Skafidas, Sci. Rep. 4, 3983 (2014)

    Article  Google Scholar 

  11. A.M. Song, Appl. Phys. A 75, 229 (2002)

    Article  CAS  Google Scholar 

  12. L.J. Xiao, Z. Xie, X. Zuo, G.P. Zhang, C.K. Wang, Phys. Lett. A 380, 3198 (2016)

    Article  Google Scholar 

  13. B. Händel, B. Hähnlein, R. Göckeritz, F. Schwierz, J. Pezoldt, Appl. Surf. Sci. 291, 87 (2014)

    Article  Google Scholar 

  14. N.S. Khairir, M.R.M. Hussin, M.I. Khairir, A.S.M. Uz-Zaman, A.S. Zoolfakar, Surf. Interfaces 6, 229 (2017)

    Article  CAS  Google Scholar 

  15. P. Zhao, D.S. Liu, S.J. Li, G. Chen, Phys. Lett. A 377(15), 1134 (2013)

    Article  CAS  Google Scholar 

  16. Z. Xu, Y. Li, Z. Liu, J. Magn. Magn. Mater. 433, 53 (2017)

    Article  CAS  Google Scholar 

  17. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  18. P. Nayebi, M. Emami-Razavi, E. Zaminpayma, J. Phys. Chem. C 120, 4589–4595 (2016)

    Article  CAS  Google Scholar 

  19. F. Cheng, B. Li, L. Li, X. Wang, S. Shen, W. Liu, H. Zheng, S. Jia, X. Yan, X. Zhang, J. Wang, Y. Gao, J. Phys. Chem. C 123, 4228–4234 (2019)

    Article  CAS  Google Scholar 

  20. E. Zaminpayma, M. Emami-Razavi, P. Nayebi, Appl. Surf. Sci. 414, 101 (2017)

    Article  CAS  Google Scholar 

  21. P. Nayebi, E. Zaminpayma, M. Emami-Razavi, Thin Solid Films 660, 521 (2018)

    Article  CAS  Google Scholar 

  22. D. Dragoman, M. Dragoman, J. Phys. D: Appl. Phys. 46, 055306 (2013)

    Article  Google Scholar 

  23. Z. Zhu, S. Joshi, S. Grover, G. Moddel, J. Phys. D: Appl. Phys. 46, 185101 (2013)

    Article  Google Scholar 

  24. G. Moddel, Z. Zhu, S. Grover, S. Joshi, Solid State Commun. 152, 1842 (2012)

    Article  CAS  Google Scholar 

  25. Y. Song, Z. Xie, Y. Ma, Z.-L. Li, C.-K. Wang, J. Phys. Chem. C 118, 18713–18720 (2014)

    Article  CAS  Google Scholar 

  26. A. Staykov, P. Tzenov, J. Phys. Chem. C 117, 13644–13653 (2013)

    Article  CAS  Google Scholar 

  27. A. Pramanik, S. Sarkar, P. Sarkar, J. Phys. Chem. C 116, 18064–18069 (2012)

    Article  CAS  Google Scholar 

  28. E. Zaminpayma, P. Nayebi, Comput. Mater. Sci. 110, 198 (2015)

    Article  CAS  Google Scholar 

  29. E. Zaminpayma, P. Nayebi, Physica E 84, 555–563 (2016)

    Article  CAS  Google Scholar 

  30. A. Abbasi, J. Inorg. Organomet. Polym. 29, 1895–1915 (2019)

    Article  CAS  Google Scholar 

  31. B. Aradi, B. Hourahine, T. Frauenheim, J. Phys. Chem. A 111, 5678 (2007)

    Article  CAS  Google Scholar 

  32. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998)

    Article  CAS  Google Scholar 

  33. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  Google Scholar 

  34. ShN Shirodkar, U.V. Waghmare, Phys. Rev. B 86, 165401 (2012)

    Article  Google Scholar 

  35. M.S.A. Hussien, M.I. Mohammed, I.S. Yahia, J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-019-01433-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Emami-Razavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaminpayma, E., Nayebi, P. & Emami-Razavi, M. Electronic Properties of the Interface Between Metallic Doped Zigzag Graphene and Pristine Graphene Nanoribbons. J Inorg Organomet Polym 30, 3694–3701 (2020). https://doi.org/10.1007/s10904-020-01566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01566-x

Keywords

Navigation