Skip to main content
Log in

Structural and electronic properties of carbon adsorbed on Fe(100)

  • Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Density functional theory within general gradient approximation (GGA) has been used to investigate sub-monolayer carbon atom adsorbed on Fe(100) as a function of coverage. The carbon atoms prefer to adsorb in the fourfold hollow site and bind strongly with the Fe surfaces. There is a substantial and strong coverage dependence of the carbon-induced expansion of the first interlayer spacing, reflecting a weakening of Fe–Fe bonds between the two outermost substrate layers. Some charge is found to transfer from substrate Fe to the adsorbate C atoms, which is responsible for the increase of work function. The density of states (DOS) analysis indicates the bonding of carbon with the first surface layer Fe atoms is primarily due to the interaction between Fe 3dx2-y2, xy and C 2px, y orbitals, and the bonding of carbon with the second surface layer Fe atom that sits directly below the carbon atom is mainly from interaction between the minority spin Fe 3dz2 and C 2pz orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Börnstein, Group III, Solid State Physics, Magnetic Properties of Metals (Springer-Verlag, Berlin, 1986), Vol. 19

    Google Scholar 

  2. G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, New York, 1994)

    Google Scholar 

  3. C.M. Deng, C.F. Huo, L.L. Bao, X.R. Shi, Y.W. Li, J.G. Wang, H.J. Jiao, Chem. Phys. Lett. 448, 83 (2007)

    Article  ADS  Google Scholar 

  4. E.V. Shevchenko, D.V. Talapin, C.B. Murray, S.O. Brien, J. Am. Chem. Soc. 128, 3620 (2006)

    Article  Google Scholar 

  5. A.V. Santos, M.I. Costa, C.A. Kuhnen, J. Magn. Magn. Mater. 166, 223 (1997)

    Article  ADS  Google Scholar 

  6. W.C. Chiou, E.A. Carter, Surf. Sci. 530, 87 (2003)

    Article  ADS  Google Scholar 

  7. B.K. Nash, B.K Rao, P. Jena, J. Chem. Phys. 105, 11020 (1996)

    Article  ADS  Google Scholar 

  8. Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li, Phys. Rev. B 76, 035412 (2007)

    Article  ADS  Google Scholar 

  9. D.E. Jiang, E.A. Carter, Phys. Rev. B 67, 214103 (2003)

    Article  ADS  Google Scholar 

  10. B.J. Lee, Acta. Mater. 54, 701 (2006)

    Article  Google Scholar 

  11. C. Domain, C.S. Becquart, J. Foct, Phys. Rev. B 69, 144112 (2004)

    Article  ADS  Google Scholar 

  12. Y. Niu, S.Y. Wang, D.L. Zhao, C.Y. Wang, J. Phys.: Condens. Matter 13, 4267 (2001)

    Article  ADS  Google Scholar 

  13. C.S. Becquart, J.M. Raulot, G. Bencteux, C. Domain, M. Perez, S. Garruchet, H. Nguyen, Comput. Mater. Sci. 40, 119 (2007)

    Article  Google Scholar 

  14. R.A. Wu, J. Freeman, G.B. Olson, Phys. Rev. B 53, 7054 (1996)

    Google Scholar 

  15. J. Grabke, W. Paulitschke, G. Tauber, H. Viefhaus, Surf. Sci. 63, 377 (1977)

    Article  ADS  Google Scholar 

  16. V. Blum, A. Schmidt, W. Meier, L. Hammer, K. Heinz, J. Phys.: Condens. Matter. 15, 3517 (2003)

    Article  ADS  Google Scholar 

  17. J. Fujii, M. Galaktionov, L. Giovanelli, G. Panaccione, F. Bondino, I. Vobornik, G. Rossi, Thin Solid Films 428, 30 (2003)

    Article  ADS  Google Scholar 

  18. D.E. Jiang, E.A. Carter, Phys. Rev. B 71, 045402 (2005)

    Article  ADS  Google Scholar 

  19. D.C. Sorescu, Phys. Rev. B 73, 155420 (2006)

    Article  ADS  Google Scholar 

  20. G. Panaccione, J. Fujii, I. Vobornik, G. Trimarchi, N. Binggeli, A. Goldoni, R. Larciprete, G. Rossi, Phys. Rev. B 73, 035431 (2006)

    Article  ADS  Google Scholar 

  21. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  22. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  23. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  26. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  27. P. Błönski, A. Kiejna, Surf. Sci. 601, 123 (2007)

    Article  ADS  Google Scholar 

  28. M.J.S. Spencer, A. Hung, I.K. Snook, I. Yarovsky, Surf. Sci. 513, 389 (2002)

    Article  ADS  Google Scholar 

  29. P. Błönski, A. Kiejna, J. Hafner, Surf. Sci. 590, 88 (2005)

    Article  ADS  Google Scholar 

  30. S.G. Nelson, M.J.S. Spencer, I.K. Snook, I. Yarovsky, Surf. Sci. 590, 63 (2005)

    Article  ADS  Google Scholar 

  31. Z.Q. Wang, Y.S. Li, F. Jona, P.M. Marcus, Solid State Communn. 61, 623 (1987)

    Article  ADS  Google Scholar 

  32. G.W. Fernando, J.W. Wilkins, Phys. Rev. B 35, 2995 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Zhou, J., Liu, F. et al. Structural and electronic properties of carbon adsorbed on Fe(100). Eur. Phys. J. B 74, 555–564 (2010). https://doi.org/10.1140/epjb/e2010-00111-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00111-9

Keywords

Navigation