The European Physical Journal B

, Volume 72, Issue 1, pp 53–57 | Cite as

First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal

  • V. E. Alexandrov
  • E. A. Kotomin
  • J. Maier
  • R. A. Evarestov
Open Access
Solid State and Materials

Abstract

The structural and electronic properties of the neutral and positively charged oxygen vacancies (F and F+ centres) in the bulk and on the (001) surfaces of SrTiO3 crystal are examined within the hybrid Hartree-Fock and density functional theory (HF-DFT) method based upon the linear combination of atomic orbital (LCAO) approach. A comparison of the formation energy for surface and bulk defects indicates a perceptible propensity for the segregation of neutral and charged vacancies to both SrO and TiO2 surface terminations with a preference in the latter case which is important for interpretation of space charge effects at ceramic interfaces. It is found that the vacancies reveal more shallow energy levels in the band gap on surfaces rather than in the bulk, in particular, on the TiO2 surface. The charged F+ centre has significantly deeper energy levels both in bulk and on the surfaces, as compared with the neutral F centre.

PACS

61.72.jd Vacancies 71.15.Ap Basis sets and related methodology 61.72.jn Color centers 

References

  1. 1.
    P.A. Fleury, J.F. Scott, J.M. Worlock, Phys. Rev. Lett. 21, 16 (1968)CrossRefADSGoogle Scholar
  2. 2.
    P.A. Cox, Transition Metal Oxides (Clarendon Press, Oxford, UK, 1995)Google Scholar
  3. 3.
    The Chemical Physics of Solid Surfaces — Oxide Surfaces, edited by P. Woodruff (Elsevier, Amsterdam, 2001)Google Scholar
  4. 4.
    S.H. Paek, E.S. Lee, S.H. Kim, J.Y. Seong, J.P. Mah, C.S. Park, J.S. Choi, J.H. Jung, Journal of Materials Science 33, 1239 (1998)CrossRefADSGoogle Scholar
  5. 5.
    W. Zhong, R.D. Kingsmith, D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994)CrossRefADSGoogle Scholar
  6. 6.
    S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Comput. Mater. Sci. 29, 165 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Xie, H.T. Yu, G.X. Zhang, H.G. Fu, J. Phys. Condens. Matter 20, 215215 (2008)CrossRefADSGoogle Scholar
  8. 8.
    E. Heifets, R.I. Eglitis, E.A. Kotomin, J. Maier, G. Borstel, Phys. Rev. B 64, 235417 (2001)CrossRefADSGoogle Scholar
  9. 9.
    D.S. Deak, Materials Science and Technology 23, 127 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Piskunov, E.A. Kotomin, E. Heifets, J. Maier, R.I. Eglitis, G. Borstel, Surf. Sci. 575, 75 (2005)CrossRefADSGoogle Scholar
  11. 11.
    E. Heifets, W.A. Goddard, E.A. Kotomin, R.I. Eglitis, G. Borstel, Phys. Rev. B 69, 035408 (2004)CrossRefADSGoogle Scholar
  12. 12.
    S.A. Prosandeyev, A.V. Fisenko, A.I. Riabchinski, I.A. Osipenko, I.P. Raevski, N. Safontseva, J. Phys. Condens. Matter 8, 6705 (1996)CrossRefADSGoogle Scholar
  13. 13.
    R. Astala, P.D. Bristowe, Modelling and Simulation in Materials Science and Engineering 9, 415 (2001)CrossRefADSGoogle Scholar
  14. 14.
    J.P. Buban, H. Iddir, S. Ogüt, Phys. Rev. B 69, 180102 (2004)CrossRefADSGoogle Scholar
  15. 15.
    J. Carrasco, F. Illas, N. Lopez, E.A. Kotomin, Y.F. Zhukovskii, R.A. Evarestov, Y.A. Mastrikov, S. Piskunov, J. Maier, Phys. Rev. B 73, 064106 (2006)CrossRefADSGoogle Scholar
  16. 16.
    D. Ricci, G. Bano, G. Pacchioni, F. Illas, Phys. Rev. B 68, 224105 (2003)CrossRefADSGoogle Scholar
  17. 17.
    R.A. Evarestov, E.A. Kotomin, Y.F. Zhukovskii, Int. J. Quant. Chem. 106, 2173 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Y.F. Zhukovskii, E.A. Kotomin, R.A. Evarestov, D.E. Ellis, Int. J. Quant. Chem. 107, 2956 (2007)CrossRefADSGoogle Scholar
  19. 19.
    P.E. Blöchl, Phys. Rev. B 62, 6158 (2000)CrossRefADSGoogle Scholar
  20. 20.
    J.L. Gavartin, D.M. Ramo, A.L. Shluger, G. Bersuker, B.H. Lee, Appl. Phys. Lett. 89, 082908 (2006)CrossRefADSGoogle Scholar
  21. 21.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)CrossRefADSGoogle Scholar
  22. 22.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefADSGoogle Scholar
  23. 23.
    R. Dovesi, C. Saunders, V.R. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalerri, K. Doll, N.M. Harrison, I.J. Bush, P. D’Arco et al., CRYSTAL-2006 User’s Manual (University of Torino, Torino, 2006)Google Scholar
  24. 24.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    Ferroelectrics and Related Substances, New Series, Landolt-Bornstein (Springer Verlag, Berlin, 1969), Vol. 3Google Scholar
  26. 26.
    S.B. Zhang, J. Phys. Condens. Matter 14, R881 (2002)CrossRefADSGoogle Scholar
  27. 27.
    R. Astala, P.D. Bristowe, J. Phys. Condens. Matter 14, 6455 (2002)CrossRefADSGoogle Scholar
  28. 28.
    L.X. He, D. Vanderbilt, Phys. Rev. B 68, 134103 (2003)CrossRefADSGoogle Scholar
  29. 29.
    R. Courths, Physica Status Solidi B-Basic Research 100, 135 (1980)CrossRefGoogle Scholar
  30. 30.
    V.E. Henrich, G. Dresselhaus, H.J. Zeiger, Phys. Rev. B 17, 4908 (1978)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2009

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • V. E. Alexandrov
    • 1
  • E. A. Kotomin
    • 1
    • 2
  • J. Maier
    • 1
  • R. A. Evarestov
    • 3
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartGermany
  2. 2.Institute of Solid State Physics, University of LatviaRigaLatvia
  3. 3.Department of Quantum ChemistrySt.Petersburg State UniversityStary PeterhofRussia

Personalised recommendations