Skip to main content
Log in

Electronic Structure of Oxygen Vacancies in the Orthorhombic Noncentrosymmetric Phase Hf0.5Zr0.5O2

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The electronic structure of stoichiometric and oxygen-depleted Hf0.5Zr0.5O2 in the orthorhombic noncentrosymmetric phase has been studied by X-ray photoelectron spectroscopy and quantum-chemical simulation based on the density functional theory. It has been established that the ion-etching-induced peak in the photoelectron emission spectrum with the energy above the top of the o-Hf0.5Zr0.5O2 valence band is due to oxygen vacancies. A method of estimating the density of oxygen vacancies from the comparison of the experimental and theoretical photoelectron spectra of the valence band has been proposed. It has been established that oxygen polyvacancies in o-Hf0.5Zr0.5O2 are not formed: the energetically favorable spatial arrangement of oxygen vacancies in a crystal corresponds to noninteracting oxygen vacancies distant from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Nano Lett. 12, 4318 (2012).

    Article  ADS  Google Scholar 

  2. V. A. Pustovarov, T. V. Perevalov, V. A. Gritsenko, T. P. Smirnova, and A. P. Yelisseyev, Thin Solid Films 519, 6319 (2011).

    Article  ADS  Google Scholar 

  3. J. Robertson and R. M. Wallace, Mater. Sci. Eng., R 88, 1 (2015).

    Article  Google Scholar 

  4. V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Phys. Rep. 613, 1 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  5. J. H. Hur, S. Park, and U. I. Chung, J. Appl. Phys. 112, 113719 (2012).

    Article  ADS  Google Scholar 

  6. D. R. Islamov, T. V. Perevalov, V. A. Gritsenko, C. H. Cheng, and A. Chin, Appl. Phys. Lett. 106, 102906 (2015).

    Article  ADS  Google Scholar 

  7. D. R. Islamov, A. G. Chernikova, M. G. Kozodaev, A.M. Markeev, T. V. Perevalov, V. A. Gritsenko, and O. M. Orlov, JETP Lett. 102, 544 (2015).

    Article  ADS  Google Scholar 

  8. M. Pešic, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. H. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 26, 4601 (2016).

    Article  Google Scholar 

  9. C. Morant, A. Fernandez, A. R. Gonzalezelipe, L. Soriano, A. Stampfl, A. M. Bradshaw, and J. M. Sanz, Phys. Rev. B 52, 11711 (1995).

    Article  ADS  Google Scholar 

  10. T. V. Perevalov, V. S. Aliev, V. A. Gritsenko, A. A. Saraev, and V. V. Kaichev, Microelectron. Eng. 109, 21 (2013).

    Article  Google Scholar 

  11. Q. F. Zeng, A. R. Oganov, A. O. Lyakhov, C. W. Xie, X. D. Zhang, J. Zhang, Q. Zhu, B. Q. Wei, I. Grigorenko, L. T. Zhang, and L. F. Cheng, Acta Crystallogr. C 70, 76 (2014).

    Article  Google Scholar 

  12. T. V. Perevalov, D. R. Islamov, and A. A. Saraev, Tech. Phys. Lett. 42, 601 (2016).

    Article  ADS  Google Scholar 

  13. S. Miyazaki, Appl. Surf. Sci. 190, 66 (2002).

    Article  ADS  Google Scholar 

  14. F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, R. Nouar, A. Sarkissian, C. Gomez-Yanez, M. A. Gauthier, and A. Ruediger, Appl. Phys. Lett. 110, 093106 (2017).

    Article  ADS  Google Scholar 

  15. R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White, J. Appl. Phys. 101, 074113 (2007).

    Article  ADS  Google Scholar 

  16. M. Kirm, J. Aarik, M. Jurgens, and I. Sildos, Nucl. Instrum. Methods Phys. Res., Sect. A 537, 251 (2005).

    Article  ADS  Google Scholar 

  17. V. V. Afanas’ev, A. Stesmans, C. Zhao, M. Caymax, T. Heeg, J. Schubert, Y. Jia, D. G. Schlom, and G. Lucovsky, Appl. Phys. Lett. 85, 5917 (2004).

    Article  ADS  Google Scholar 

  18. J. L. Gavartin, D. Mu noz Ramo, A. L. Shluger, G. Bersuker, and B. H. Lee, Appl. Phys. Lett. 89, 082908 (2006).

    Article  ADS  Google Scholar 

  19. O. Renault, D. Samour, J. F. Damlencourt, D. Blin, F. Martin, S. Marthon, N. T. Barrett, and P. Besson, Appl. Phys. Lett. 81, 3627 (2002).

    Article  ADS  Google Scholar 

  20. R. Jiang, E. Q. Xie, and Z. F. Wang, Appl. Phys. Lett. 89, 142907 (2006).

    Article  ADS  Google Scholar 

  21. T. S. Jeon, J. M. White, and D. L. Kwong, Appl. Phys. Lett. 78, 368 (2001).

    Article  ADS  Google Scholar 

  22. S. Tsunekawa, K. Asami, S. Ito, M. Yashima, and T. Sugimoto, Appl. Surf. Sci. 252, 1651 (2005).

    Article  ADS  Google Scholar 

  23. I. Bespalov, M. Datler, S. Buhr, W. Drachsel, G. Rupprechter, and Y. Suchorski, Ultramicroscopy 159, 147 (2015).

    Article  Google Scholar 

  24. T. V. Perevalov and D. R. Islamov, Microelectron. Eng. 178, 275 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Perevalov.

Additional information

Original Russian Text © T.V. Perevalov, V.A. Gritsenko, D.R. Islamov, I.P. Prosvirin, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 1, pp. 62–67.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevalov, T.V., Gritsenko, V.A., Islamov, D.R. et al. Electronic Structure of Oxygen Vacancies in the Orthorhombic Noncentrosymmetric Phase Hf0.5Zr0.5O2. Jetp Lett. 107, 55–60 (2018). https://doi.org/10.1134/S0021364018010071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018010071

Navigation