Skip to main content
Log in

Complex behavior of simple maps with fluctuating delay times

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Delay systems used to model retarded actions are relevant in many fields such as optics, mechanical machining, biology or physiology. A frequently encountered situation is that the length of the delay time changes with time. In this study, we use a simple map system to investigate the influence of the fluctuating delay time on the system dynamics. For simplicity, we start from a case with the delay time taking only the value of zero or one discrete time steps, where the system dynamics reduces to one- and two-dimensional map, respectively. We study two situations, periodic or random variation of the delay. Rich dynamics including coexisting multiple attractors, strange nonchaotic attractors and on-off intermittency are observed. For a special case we can show analytically the existence of a dense set of singularities of the Lyapunov exponent. Finally we present results for higher dimensional generalizations to show the relevance of our findings to more general situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ikeda, H. Daido, O. Akimoto, Phys. Rev. Lett. 45, 709 (1980)

    Article  ADS  Google Scholar 

  2. L. Glass, M.C. Mackey, From Clocks to Chaos, The Rhythms of Life (Princeton University Press, Princeton, NJ, 1988)

    MATH  Google Scholar 

  3. D.J. Amit, Modeling Brain Function: The World of Attractor Neural Networks (Cambridge University Press, New York, 1989)

    MATH  Google Scholar 

  4. J. Tlusty, A. Polacek, C. Danek, J. Spacek, Selbsterregte Schwingungen an Werkzeugmaschinen (VEB Verlag Technik, Berlin, 1962); S.A. Tobias, Machine tool vibration (Blackie, London, 1965)

    Google Scholar 

  5. R. Bellman, Adaptive control processes: A guided tour (Princeton Univ. Press, Princeton, 1961). For the recent application in the context of nonlinear dynamics see for instance K. Pyragas, Phys. Lett. A 170, 421 (1992)

    MATH  Google Scholar 

  6. S. Madruga, S. Boccaletti, M.A. Matias, Int. J. Bif. Chaos 11, 2875 (2001); W.H. Kye, M. Choi, S. Rim, M.S. Kurdoglyan, C.M. Kim, Y.J. Park, Phys. Rev. E 69, 055202(R) (2004); E.M. Shahverdiev, R.A. Nuriev, R.H. Hashimov, K.A. Shore, nlin.CD/0404050 (2004); W. Michiels, V. Van Assche, S. Niculescu, IEEE Trans. Automat. Contr. 50, 493 (2005); D.V. Senthilkumar, M. Lakshmanan, Chaos 17, 013112 (2007)

    Article  Google Scholar 

  7. N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomathematics (Springer, Berlin, 1978), Vol. 27

    MATH  Google Scholar 

  8. T. Insperger, G. Stepan, J. Turi, Nonlinear Dyn. 47, 275 (2007)

    Article  MATH  Google Scholar 

  9. See for example A. Fichtner, W. Just, G. Radons, J. Phys. A 37, 3385 (2004), and the references therein

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. G. Benettin, L. Galgani, J.M. Strelcyn, Phys. Rev. A 14, 2338 (1976); G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 9 (1980); G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 21 (1980); I. Shimada, T. Nagashima, Prog. Theor. Phys. 61, 1605 (1979)

    Article  ADS  Google Scholar 

  11. J. Curry, Commun. Math. Phys. 68, 129 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. C. Grebogi, E. Ott, S. Pelikan, J.A. Yorke, Physica D 13, 261 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. J.F. Heagy, S.M. Hammel, Physica D 70, 140 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. A.S. Pikovsky, U. Feudel, J. Phys. A 27, 5209 (1994)

    Article  MATH  ADS  Google Scholar 

  15. T. Yalcinkaya, Y.C. Lai, Phys. Rev. Lett. 77, 5039 (1996)

    Article  ADS  Google Scholar 

  16. A. Prasad, V. Mehra, R. Ramaswamy, Phys. Rev. Lett. 79, 4127 (1997)

    Article  ADS  Google Scholar 

  17. H.L. Yang, Phys. Rev. E 63, 036208 (2001)

    Article  ADS  Google Scholar 

  18. X.G. Wang, M. Zhan, C.H. Lai, Y.C. Lai, Phys. Rev. Lett. 92, 074102 (2004)

    Article  ADS  Google Scholar 

  19. M.F. Barnsley, Fractals Everywhere (Academic Press Inc., New York, 1988); M.F. Barnsley, S.G. Demko, Proc. Roy. Soc. London Ser. A 399, 243 (1985)

    MATH  Google Scholar 

  20. N. Platt, E.A. Spiegel, C. Tresser, Phys. Rev. Lett. 70, 279 (1993); E. Ott, J.C. Sommerer, Phys. Lett. A 188, 39 (1994); H.L. Yang, E.J. Ding, Phys. Rev. E 54, 1361 (1996)

    Article  ADS  Google Scholar 

  21. V.I. Oseledec, Trans. Moscow Math. Soc. 19, 197 (1968)

    MathSciNet  Google Scholar 

  22. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, New York, 1993)

    MATH  Google Scholar 

  23. See for example the chapter V of K. Knopp, Elements of the theory of functions (Dover, New York, 1952)

    MATH  Google Scholar 

  24. B. Derrida, H.J. Hilhorst, J. Phys. A: Math. Gen. 16, 2641 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Th.M. Nieuwenhuizen, J.M. Luck, J. Stat. Phys. 41, 745 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  26. See for example the recent discussion on a high-dimensional system: E. Barreto, B.R. Hunt, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 78, 4561 (1997)

    Article  ADS  Google Scholar 

  27. J. Wang et al., preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Radons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radons, G., Yang, HL., Wang, J. et al. Complex behavior of simple maps with fluctuating delay times. Eur. Phys. J. B 71, 111–119 (2009). https://doi.org/10.1140/epjb/e2009-00262-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00262-8

PACS

Navigation