Skip to main content
Log in

A first principles study of the adsorption and dissociation of CO2 on the δ-Pu (111) surface

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A complete understanding of the nature of the 5f electrons has been and continues to be a major scientific problem in condensed matter physics. Bulk and surface electronic structure studies of the actinides as also atomic and molecular adsorptions on the actinide surfaces provide a path towards this understanding. In this work, ab initio calculations within the framework of density functional theory have been used to study the adsorption of molecular CO2 and the corresponding partially dissociated (CO + O) and completely dissociated (C + O + O) products on the δ-Pu (111) surface. The completely dissociated C + O + O configurations exhibit the strongest binding with the surface (7.92 eV), followed by partially dissociated products CO + O (5.08 eV), with molecular CO2 adsorption having the lowest binding energies (2.35 eV). For all initial vertically upright orientations, the CO2 molecule physisorbs or do not bind to the surface and the geometry and orientation do not change. For all initial flat lying orientations chemisorption occurs, with the final state corresponding to a bent CO2 molecule with bond angles of 117°–130° and the elongation of the CO bond. For CO + O co-adsorption, the stable configurations corresponded to CO dipole moment orientations of 100°–172° with respect to the surface normal and the elongation of the CO bond. The most stable chemisorption cases correspond to anomalously large rumpling of the top Pu layer. The interactions of the CO2 and CO with the Pu surface have been analyzed using the energy density of states and difference charge density distributions. The nature and the behavior of the 5f electrons have also been discussed in detail in the context of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.J. Katz, G.T. Seaborg, L.R. Morss, The Chemistry of the Actinide Elements (Chapman and Hall, 1986); Transuranium Elements: A Half Century, edited by L.R. Morss, J. Fuger (American Chemical Society, Washington, D.C. 1992); The Chemistry of the Actinide and Transactinide Elements, edited by L.R. Morss, N.M. Edelstein, J. Fuger, J.J. Katz, Hon (Springer, New York, 2006), Vols. 1–5

  • Actinides 2005-Basic Science, Applications, and Technology, edited by L. Soderholm, J.J. Joyce, M.F. Nicol, D.K. Shuh, J.G. Tobin, Proceedings of the Materials Research Society 802 (2004); Actinides 2005-Basic Science, Applications, and Technology, edited by J.L. Sarrao, A.J. Schwartz, M.R. Antonio, P.C. Burns, R.G. Haire, H. Nitsche, Proceedings of the Materials Research Society, 893 (2005); Actinides 2006-Basic Science, Applications, and Technology, edited by K.J.M. Blobaum, E.A. Chandler, L. Havela, M.B. Maple, M.P. Neu, Proceedings of the Materials Research Society, 986 (2006); D.K. Shuh, B.W. Chung, T. Albrecht-Schmitt, T. Gouder, J.D. Thompson, Actinides 2008-Basic Science, Applications, and Technology, Proceedings of the Materials Research Society 1104 (2008)

  • Plutonium Futures – The Science, edited by K.K.S. Pillay, K.C. Kim, American Institute of Physics Conference Proceedings, 532 (2000); Plutonium Futures – The Science, edited by G.D. Jarvinen, American Institute of Physics Conference Proceedings 673 (2003)

  • A.M. Boring, J.L. Smith, Los Alamos Science 26, 90 (2000); B.R. Cooper, Los Alamos Science 26, 154 (2000); D.L. Clark, Los Alamos Science 26, 364 (2000)

    Google Scholar 

  • Advances in Plutonium Chemistry 1967–2000, edited by D. Hoffman, American Nuclear Society, La Grange, Illinois and University Research Alliance, Amarillo, Texas (2002)

  • Proceedings of the Plutonium Futures – The Science 2006 Conference, edited by M.J. Fluss, D.E. Hobart, P.G. Allen, J.D. Jarvinen, J. Alloys Compounds 444445 (2007)

  • I. Solovyev, A.I. Lichtenstein, A.V. Gubanov, V.P. Antropov, O.K. Andersen, Phys. Rev. B 43, 14414 (1991)

    Google Scholar 

  • P. Söderlind, O. Eriksson, B. Johansson, J.M. Wills, Phys. Rev. B 55, 1997 (1997); P. Söderlind, Europhys. Lett. 55, 525 (2001); P. Söderlind, A. Landa, B. Sadigh, Phys. Rev. B. 66, 205109 (2002)

    Google Scholar 

  • J.C. Boettger, Int. J. Quant. Chem. 95, 380 (2003)

    Google Scholar 

  • A.V. Postnikov, V.P. Antropov, Comp. Mat. Sci. 17, 438 (2000)

    Google Scholar 

  • Y. Wang, Y. Sun, J. Phys.: Cond. Matt. 12, L311 (2000)

  • X. Wu, A.K. Ray, Phys. Rev. B 72, 045115 (2005); H.R. Gong, A.K. Ray, Surf. Sci. 600, 2231 (2006)

    Google Scholar 

  • A.L. Kutepov, S.G. Kutepova, J. Phys. Cond.: Matt. 15, 2607 (2003)

    Google Scholar 

  • J.M. Wills, O. Eriksson, A. Delin, P.H. Andersson, J.J. Joyce, T. Durakiewicz, M.T. Butterfield, A.J. Arko, D.P. Moore, L.A. Morales, J. Elec. Spec. Rel. Phen. 135, 163 (2004)

    Google Scholar 

  • J.C. Lashley, A. Lawson, R.J. McQueeny, G.H. Lander, Phys. Rev. B 72, 054416 (2005)

    Google Scholar 

  • A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, J. Rebizant, Phys. Rev. B 62, 1773 (2000)

    Google Scholar 

  • T Gouder, L. Havela, F. Wastin, J. Rebziant, Europhys. Lett. 55, 705 (2001)

    Google Scholar 

  • S.Y. Savrasov, G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000)

    Google Scholar 

  • J. Bouchet, B. Siberchicot, F. Jollet, A. Pasturel, J. Phys.: Condens. Matter 12, 1723 (2000)

    Google Scholar 

  • A.B. Shick, V. Drchal, L. Havela, Europhys. Lett. 69, 588 (2005)

    Google Scholar 

  • A.O. Shorikov, A.V. Lukoyanov, M.A. Korotin, V.I. Anisimov, Phys. Rev. B 72, 024458 (2005)

    Google Scholar 

  • L.V. Pourovskii, M.I. Katsnelson, A.I. Lichtenstein, L. Havela, T. Gouder, F. Wastin, A.B. Shick, V. Drchal, G.H. Lander, Europhys. Lett. 74, 479 (2006)

    Google Scholar 

  • A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Google Scholar 

  • K.T. Moore, G. van der Laan, R.G. Haire, M.A. Wall, A.J. Schwartz, Phys. Rev. B 73, 033109 (2006)

    Google Scholar 

  • S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature 410, 793 (2001)

    Google Scholar 

  • X. Dai, S.Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, E. Abrahams, Science 300, 953 (2003)

    Google Scholar 

  • J. Shim, K. Haule, G. Kotliar, Nature 446, 513 (2007)

    Google Scholar 

  • J.-X. Zhu, A.K. McMahan, M.D. Jones, T. Durakiewicz, J.J. Joyce, J.M. Wills, R.C. Albers, Phys. Rev. B 76, 245118 (2007)

    Google Scholar 

  • L.V. Pourovskii, G. Kotliar, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 75, 235107 (2007)

    Google Scholar 

  • J. Bouchet, R.C. Albers, M.D. Jones, G. Jomard, Phys. Rev. Lett. 92, 095503 (2004)

    Google Scholar 

  • Y.G. Hao, O. Eriksson, G.W. Fernando, B.R. Cooper, Phys. Rev. B 43, 9467 (1991)

    Google Scholar 

  • A.K. Ray, J.C. Boettger, Phys. Rev. B 70, 085418 (2004); J.C. Boettger, A.K. Ray, Int. J. Quant. Chem. 105, 564 (2005)

    Google Scholar 

  • O. Eriksson, Y.G. Hao, B.R. Cooper, G.W. Fernando, L.E. Cox, J.W. Ward, A.M. Boring, Phys. Rev. B 43, 4590 (1991)

    Google Scholar 

  • M.N. Huda, A.K. Ray, Eur. Phys. J. B, 40, 337 (2004); M.N. Huda, A.K. Ray, Physica B 352, 5 (2004); M.N. Huda, A.K. Ray, Int. J. Quant. Chem. 105, 280 (2005); M.N. Huda, A.K. Ray, Phys. Rev. B 72, 085101 (2005)

  • R. Atta-Fynn, A.K. Ray, Phys. Rev. B 75, 195112 (2007); R. Atta-Fynn, A.K. Ray, Phys. Rev. B 77, 085105 (2008); R. Atta-Fynn, A.K. Ray, Physica B 392, 112 (2007); R. Atta-Fynn, A.K. Ray, Physica B 400, 307 (2007), to be published

  • P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  • B. Delley, J. Chem. Phys. 92, 508 (1990); B. Delley, J. Chem. Phys. 113, 7756 (2000)

  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal properties (Vienna University of Technology, Austria, 2001)

  • D.D. Koelling, B.N. Harmon, J. Phys. C 10, 3107 (1977)

    Google Scholar 

  • J. Kunes, P. Novak, R. Schmid, P. Blaha, K. Schwarz, Phys. Rev. B 64, 153102 (2001)

    Google Scholar 

  • P.P. Dholabhai, A.K. Ray, J. Alloys. Comp. 444–445, 356 (2007)

    Google Scholar 

  • M. Gajdoš, A. Eichler, J. Hafner, J. Phys. Cond. Matt. 16, 1141 (2004)

    Google Scholar 

  • A. Föhlisch, M. Nyberg, P. Bennich, L. Triguero, J. Hasselström, O. Karis, L.G.M. Pettersson, A. Nilsson, J. Chem. Phys. 112, 1946 (2000)

    Google Scholar 

  • T. Durakiewicz, J.J. Joyce, A.J. Arko, D.P. Moore, L.A. Morales, J.L. Sarrao, S. Halas, J. Sikora, W. Krolopp, in 61st Annual Physical Electronics Conference, Taos, New Mexico, 2001; T. Durakiewicz, A.J. Arko, J.J. Joyce, D.P. Moore, Bull. Am. Phys. Soc. 46 (2001)

  • T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, C.T. Chan, Phys. Rev. B 68, 195408 (2003)

    Google Scholar 

  • H.-J. Freund, R.P. Messmer, Surf. Sci. 172, 1 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atta-Fynn, R., Ray, A. A first principles study of the adsorption and dissociation of CO2 on the δ-Pu (111) surface. Eur. Phys. J. B 70, 171–184 (2009). https://doi.org/10.1140/epjb/e2009-00217-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00217-1

PACS

Navigation