Skip to main content
Log in

First Principles Study of Molecular O2 Adsorption on the PdO(101) Surface

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Interactions of O2 with the PdO(101) surface were studied using spin-dependent density-functional theory (DFT) with both the PBE and the non-local hybrid HSE exchange–correlation functional. The adsorption energies are strongly overestimated (by 40–60 kJ/mol) with PBE, whereas HSE predicts adsorption energies that are within ~5 kJ/mol of values derived from temperature programmed desorption (TPD) experiments. A detailed partial density of states analysis indicates that the band gap between the PdO d-band center and the LUMO of O2 plays an important role in determining the adsorption strength. This gap is larger for the HSE functional and leads to a decrease in the back donation of the metal d-states to the O2 LUMO orbital resulting in weaker adsorption. Based on the DFT–HSE calculations, three adsorption minima are found to be stable. The most favored configuration, with an adsorption energy of −67 kJ/mol, consists of an O2 molecule lying flat and interacting with two coordinatively unsaturated Pd (Pdcus) surface atoms. The other two configurations have weaker adsorption energies of about −25 kJ/mol and bind to a single Pdcus atom with the O2 molecule oriented away from the surface. The HSE results can be correlated with the observed TPD spectra, which shows only one type of O2 configuration at low coverages with a subsequently lower temperature (more weakly bound) peak evolving at higher coverages associated with the singly coordinated O2 adsorption configurations that start to populate when two adjacent Pdcus sites start to become unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McCarty JG (1995) Catal Today 26:283–293

    Article  CAS  Google Scholar 

  2. Datye AK, Bravo J, Nelson TR, Atanasova P, Lyubovsky M, Pfefferle L (2000) Appl Catal A 198:179–196

    Article  CAS  Google Scholar 

  3. Carstens JN, Su SC, Bell AT (1998) J Catal 176:136–142

    Article  CAS  Google Scholar 

  4. Hoffmann MJ, Reuter K (2014) Top Catal 57:159–170

    Article  CAS  Google Scholar 

  5. Duan Z, Henkelman G (2014) ACS Catal 4:3435–3443

    Article  CAS  Google Scholar 

  6. Weng X, Yuan X, Li H, Li X, Chen M, Wan H (2015) Sci China Chem 58:174–179

    Article  CAS  Google Scholar 

  7. Martin NM, Van Den Bossche M, Grönbeck H, Hakanoglu C, Zhang F, Li T, Gustafson J, Weaver JF, Lundgren E (2014) J Phys Chem C 118:1118–1128

    Article  CAS  Google Scholar 

  8. Hellman A, Resta A, Martin NM, Gustafson J, Trinchero A, Carlsson PA, Balmes O, Felici R, Van Rijn R, Frenken JWM, Andersen JN, Lundgren E, Grönbeck H (2012) J Phys Chem Lett 3:678–682

    Article  CAS  Google Scholar 

  9. Martin NM, Van Den Bossche M, Hellman A, Grönbeck H, Hakanoglu C, Gustafson J, Blomberg S, Johansson N, Liu Z, Axnanda S, Weaver JF, Lundgren E (2014) ACS Catal 4:3330–3334

    Article  CAS  Google Scholar 

  10. Blomberg S, Hoffmann MJ, Gustafson J, Martin NM, Fernandes VR, Borg A, Liu Z, Chang R, Matera S, Reuter K, Lundgren E (2013) Phys Rev Lett 110:117601

    Article  CAS  Google Scholar 

  11. Kolasinski KW, Cemic F, Demeijere A, Hasselbrink E (1995) Surf Sci 334:19–28

    Article  CAS  Google Scholar 

  12. Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Klötzer B (2007) Phys Chem Chem Phys 9:533–540

    Article  CAS  Google Scholar 

  13. Toyoshima R, Yoshida M, Monya Y, Kousa Y, Suzuki K, Abe H, Mun BS, Mase K, Amemiya K, Kondoh H (2012) J Phys Chem C 116:18691–18697

    Article  CAS  Google Scholar 

  14. Imbihl R, Demuth JE (1986) Surf Sci 173:395–410

    Article  CAS  Google Scholar 

  15. Guo X, Hoffman A, Yates JT (1989) J Chem Phys 90:5787

    Article  CAS  Google Scholar 

  16. Sjovall P, Uvdal P (1998) J Vac Sci Technol A 16:943–947

    Article  CAS  Google Scholar 

  17. Eichler A, Mittendorfer F, Hafner J (2000) Phys Rev B 62:4744–4755

    Article  CAS  Google Scholar 

  18. Honkala K, Laasonen K (2001) J Chem Phys 115:2297–2302

    Article  CAS  Google Scholar 

  19. Campbell CT, Sellers JRV (2013) Chem Rev 113:4106–4135

    Article  CAS  Google Scholar 

  20. Weaver JF (2013) Chem Rev 113:4164–4215

    Article  CAS  Google Scholar 

  21. Lundgren E, Mikkelsen A, Andersen JN, Kresse G, Schmid M, Varga P (2006) J Phys 18:R481–R499

    CAS  Google Scholar 

  22. Kan HH, Weaver JF (2008) Surf Sci 602:L53–L57

    Article  CAS  Google Scholar 

  23. Weaver JF, Hakanoglu C, Antony A, Asthagiri A (2014) Chem Soc Rev 43:7536–7547

    Article  CAS  Google Scholar 

  24. Hinojosa JA, Kan HH, Weaver JF (2008) J Phys Chem C 112:8324–8331

    Article  CAS  Google Scholar 

  25. Zygmunt SA, Curtiss LA (2005) Quantum-chemical studies of molecular reactivity in nanoporous materials. In: Curtiss LA, Gordon MS (eds) Computational materials chemistry. Kluwer, Dordrecht, pp 191–245

    Chapter  Google Scholar 

  26. Hammer B, Hansen L, Nørskov J (1999) Phys Rev B 59:7413–7421

    Article  Google Scholar 

  27. Liu H-R, Xiang H, Gong XG (2011) J Chem Phys 135:214702

    Article  Google Scholar 

  28. Patton DC, Porezag DV, Pederson MR (1997) Phys Rev B 55:7454–7459

    Article  CAS  Google Scholar 

  29. Lide DR (2013) CRC Handbook of chemistry and physics, 94th Edition, 2013–2014. CRC Press, Boca raton

    Google Scholar 

  30. Kiejna A, Kresse G, Rogal J, De Sarkar A, Reuter K, Scheffler M (2006) Phys Rev B 73:35404

    Article  Google Scholar 

  31. Stroppa A, Termentzidis K, Paier J, Kresse G, Hafner J (2007) Phys Rev B 76:195440

    Article  Google Scholar 

  32. Gajdos M, Eichler A, Hafner J (2004) J Phys 1141:16

    Google Scholar 

  33. Zhang F, Pan L, Li T, Diulus JT, Asthagiri A, Weaver JF (2014) J Phys Chem C 118:28647–28661

    Article  CAS  Google Scholar 

  34. Bruska MK, Czekaj I, Delley B, Mantzaras J, Wokaun A (2011) Phys Chem Chem Phys 13:15947–15954

    Article  CAS  Google Scholar 

  35. Marsman M, Paier J, Stroppa A, Kresse G (2008) J Phys 20:064201

    CAS  Google Scholar 

  36. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Angyán JG (2006) J Chem Phys 124:154709

    Article  CAS  Google Scholar 

  37. Van Den Bossche M, Martin NM, Gustafson J, Hakanoglu C, Weaver JF, Lundgren E, Grönbeck H (2014) J Chem Phys 141(3):034706

    Article  Google Scholar 

  38. Hirvi JT, Kinnunen T-JJ, Suvanto M, Pakkanen TA, Nørskov JK (2010) J Chem Phys 133:084704

    Article  Google Scholar 

  39. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  40. Van den Bossche M, Grönbeck H (2015) J Am Chem Soc 137:12035–12044

    Article  CAS  Google Scholar 

  41. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  42. Kresse G, Hafner J (1993) J Non Cryst Solids 156–158:956–960

    Article  Google Scholar 

  43. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  44. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  45. Perdew J, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  46. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  47. Monkhorst H, Pack J (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  48. Weaver JF, Hakanoglu C, Hawkins JM, Asthagiri A (2010) J Chem Phys 132:024709

    Article  Google Scholar 

  49. Hakanoglu C, Hawkins JM, Asthagiri A, Weaver JF (2010) J Phys Chem C 114:11485–11497

    Article  CAS  Google Scholar 

  50. Weaver JF, Hakanoglu C, Antony A, Asthagiri A (2011) J Am Chem Soc 133:16196–16200

    Article  CAS  Google Scholar 

  51. Antony A, Hakanoglu C, Asthagiri A, Weaver JF (2012) J Chem Phys 136:054702

    Article  Google Scholar 

  52. Kan HH, Weaver JF (2009) Surf Sci 603:2671–2682

    Article  CAS  Google Scholar 

  53. Sheppard D, Terrell R, Henkelman G (2008) J Chem Phys 128:134106

    Article  Google Scholar 

  54. Tang W, Sanville E, Henkelman G (2009) J Phys 21:084204

    CAS  Google Scholar 

  55. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  56. Jiménez-Hoyos CA, Janesko BG, Scuseria GE (2008) Phys Chem Chem Phys 10:6621–6629

    Article  Google Scholar 

  57. Irikura KK (2007) J Phys Chem Ref Data 36:389–397

    Article  CAS  Google Scholar 

  58. Schweitzer C, Schmidt R (2003) Chem Rev 103:1685–1758

    Article  CAS  Google Scholar 

  59. Wang L, Maxisch T, Ceder G (2006) Phys Rev B 73:195107

    Article  Google Scholar 

  60. Scanlon DO, Morgan BJ, Watson GW, Walsh A (2009) Phys Rev Lett 103:096405

    Article  Google Scholar 

  61. Rogers DB, Shannon RD, Gillson JL (1971) J Solid State Chem 3:314–316

    Article  CAS  Google Scholar 

  62. Nilsson PO (1979) J Phys C 12:1423

    Article  CAS  Google Scholar 

  63. Okamoto H, Asô T (1967) Jpn J Appl Phys 6:779

    Article  CAS  Google Scholar 

  64. Rey E, Kamal MR, Miles RB, Royce BSH (1978) J Mater Sci 13:812–816

    Article  CAS  Google Scholar 

  65. Pawlas-Foryst E, Zabdyr L (2008) Arch Metall Mater 53:1173–1175

    Google Scholar 

  66. Wang H, Schneider WF, Schmidt D (2009) J Phys Chem C 113:15266–15273

    Article  CAS  Google Scholar 

  67. Finlay RJ, Her T, Wu C, Mazur E (1997) Surface femtochemistry of oxygen and coadsorbates on Pt(111). In: Sundstrom V (ed) Femtochemistry femtobiology ultrafast react. Imperial College, London, pp 629–659

    Google Scholar 

  68. Kresse G, Gil A, Sautet P (2003) Phys Rev B 68:3–6

    Google Scholar 

  69. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Ohio Supercomputing Center for providing computational resources. We gratefully acknowledge financial support for this work provided by the Department of Energy, Office of Basic Energy Sciences, Catalysis Science Division through Grant DE-FG02-03ER15478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Asthagiri.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Weaver, J.F. & Asthagiri, A. First Principles Study of Molecular O2 Adsorption on the PdO(101) Surface. Top Catal 60, 401–412 (2017). https://doi.org/10.1007/s11244-016-0705-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0705-9

Keywords

Navigation