Skip to main content
Log in

Dynamical mean field study of the Dirac liquid

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Renormalization is one of the basic notions of condensed matter physics. Based on the concept of renormalization, the Landau’s Fermi liquid theory has been able to explain, why despite the presence of Coulomb interactions, the free electron theory works so well for simple metals with extended Fermi surface (FS). The recent synthesis of graphene has provided the condensed matter physicists with a low energy laboratory of Dirac fermions where instead of a FS, one has two Fermi points. Many exciting phenomena in graphene can be successfully interpreted in terms of free Dirac electrons. In this paper, employing dynamical mean field theory (DMFT), we show that an interacting Dirac sea is essentially an effective free Dirac theory. This observation suggests the notion of Dirac liquid as a fixed point of interacting 2 + 1 dimensional Dirac fermions. We find one more fixed point at strong interactions describing a Mott insulating state, and address the nature of semi-metal to insulator (SMIT) transition in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Weinberg, The Quantum Theory of Fields (Cambridge Univ. Press, 1995), Vol. 1

  • C.C. Tsuei, J.R. Kirtley, Rev. Mod. Phys. 72, 969 (2000)

    Google Scholar 

  • M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995); M.R. Andrews, M.O. Mewes, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Science 273, 84 (1996)

  • S. Aubin, S. Myrskog, M.H.T. Extavour, L.J. LeBlanc, D. McKay, A. Stummer, J.H. Thywissen, Nature Phys. 2, 384 (2006)

  • S. Inouye, M.R. Andrews, J. Stenger, H.J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998)

    Google Scholar 

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004); K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

  • For a review see: A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, e-print arXiv:0709.1163

  • G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

    Google Scholar 

  • M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nature Phys. 2, 620 (2006)

    Google Scholar 

  • Vinu Lukose, R. Shankar, G. Baskaran, Phys. Rev. Lett. 98, 116802 (2007)

  • C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008)

    Google Scholar 

  • A.M. Black-Schaffer, S. Doniach, Phys. Rev. B 75, 134512 (2007)

    Google Scholar 

  • G. Baskaran, Phys. Rev. B 65, 212505 (2002)

    Google Scholar 

  • S. Pathak, V.B. Shenoy, G. Baskaran, e-print arXiv:0809.0244v1

  • J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B 59, R2474 (1999)

  • M.S. Foster, I.L. Aleiner, Phys. Rev. B 77, 195413 (2008)

    Google Scholar 

  • Z. Nourbakhsh, F. Shahbazi, S.A. Jafari, G. Baskaran, accepted in J. Phys. Soc. Jpn (2009), e-print arXiv:0812.3229

  • L. Pauling, Nature of The Chemical Bond (Cornell University Press, NY, 1960)

  • A. Georges, et al., Rev. Mod. Phys. 68, 13 (1996)

  • K. Ingersent, Q. Si, Phys. Rev. Lett. 89, 076403 (2002)

    Google Scholar 

  • A. Bostwick, T. Ohta, T. Seyller, Eli Rotenberg, Nature Physics 3, 36 (2007); A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Solid State Commun. 143, 63 (2007)

  • J.P. Hobson, W.A. Nierenberg, Phys. Rev. 89, 662 (1953)

    Google Scholar 

  • M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964)

  • H.P. Dahal, J.-P. Julien, A.V. Balatsky, e-print arXiv:0712.2836

  • G. Santoro, M. Airoldi, S. Sorella E. Tosatti, Phys. Rev. B 47, 16216 (1993)

    Google Scholar 

  • S. Sorella, E. Tosatti, Eur. Phys. Lett. 19, 699 (1992)

    Google Scholar 

  • D.T. Son, Phys. Rev. B 75, 235423 (2007)

    Google Scholar 

  • J.E. Drut, D.T. Son, Phys. Rev. B 77, 075115 (2008)

    Google Scholar 

  • I.F. Herbut, Phys. Rev. Lett. 97, 146401 (2006)

    Google Scholar 

  • G. Baskaran, S.A. Jafari, Phys. Rev. Lett. 89, 016402 (2002)

    Google Scholar 

  • S.S. Lee, P.A. Lee, Phys. Rev. Lett. 95, 036403 (2005)

    Google Scholar 

  • G. Li, A. Luican, E.Y. Andrei. e-print arXiv:0803.4016 (2008)

  • M. Ebrahimkhas, S.A. Jafari, e-print arXiv:0902.1246 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Jafari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, S. Dynamical mean field study of the Dirac liquid. Eur. Phys. J. B 68, 537–542 (2009). https://doi.org/10.1140/epjb/e2009-00128-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00128-1

PACS

Navigation