Skip to main content
Log in

Magnetic properties of quasi two-dimensional antiferromagnet Rb2MnCl4 with XXZ interaction anisotropy

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Two-dimensional Heisenberg antiferromagnet with XXZ spin anisotropy Rb2MnCl4, is studied using the method of double-time-temperature Green’s functions (GF) with arbitrary spin S (in particular case S = 5/2) within random-phase approximation (RPA) and Callen approximation (CA). Exchange field and anisotropy field are extracted from experimental data on the magnon frequencies in Rb2MnCl4. They are used to calculate dispersion relation and the sublattice magnetization in the self-consistent way in the whole temperature range. The results obtained using RPA and CA are compared. The existence of a finite temperature transition is investigated, probably describing the low-temperature critical behavior experimentally observed in many layered compounds. The Néel temperature TN is calculated employing both methods. Calculated transition temperature within RPA agrees rather well with the measured values for the quasi two-dimensional antiferromagnet Rb2MnCl4 in zero magnetic field, while CA overestimates the critical temperature. The dependence of critical temperature on parameter of spin anisotropy η is also analysed. The good agreement found between our theoretical results and the experimental data relative to the real compound Rb2MnCl4 shows that the inclusion of this type of spin anisotropy with quantum effect properly taken into account, provides a quantitative description and explanation of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.J. Birgeneau, H.J. Guggenheim, G. Shirane, Phys. Rev. B 8, 304 (1973)

    Google Scholar 

  • C. Pich, F. Schwabl, Phys. Rev. B 47, 7957 (1993)

    Google Scholar 

  • C. Pich, F. Schwabl, Phys. Rev. B 49, 413 (1994)

    Google Scholar 

  • C. Pich, F. Schwabl, J. Magn. Magn. Matter. 140–144, 1709 (1995)

  • H. Keller, I. Savić, Phys. Rev. B 28, 2638 (1983)

    Google Scholar 

  • D.A. Yablonskiy, Phys. Rev. B 44, 4467 (1991)

    Google Scholar 

  • R. Coldea, R.A. Cowley, T.G. Perring, D.F. McMorrow, B. Roessli, Phys. Rev. B 57, 5281 (1998)

    Google Scholar 

  • E. Popov, I. Edelman, J. Magn. Magn. Matter. 258–259, 134 (2003)

  • H. Tietze-Jeansch, R. van de Kamp, W. Schmidt, R. Geick, W. Trentmann, P. Vorderwisch, Physica B 234–236, 564 (1997)

  • H. Tietze-Jeansch, R. van de Kamp, W. Schmidt, Physica B 241–243, 566 (1998)

    Google Scholar 

  • R. van de Kamp, M. Steiner, H. Tietze-Jeansch, Physica B 241–243, 570 (1998)

  • E. Manousakis, Rev. Mod. Phys. 63, 1 (1991)

    Google Scholar 

  • B. Schröder, V. Wagner, N. Lehner, K.M. Kesharwani, R. Geick, Phys. Stat. Sol. (b) 97, 501 (1980)

    Google Scholar 

  • H.W. de Wijn, L.R. Walker, R.E. Walstedt, Phys. Rev. B 8, 285 (1973)

    Google Scholar 

  • A.F.M. Arts, H.W. de Wijn, Phys. Rev. B 15, 4348 (1977)

    Google Scholar 

  • M.G. Cottam, D.R. Tilley, Introduction to Surface and Superlattice Excitations (Cambrige Univ. Press, Cambrige, 1989)

  • N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Google Scholar 

  • J. Rossat-Mignod, L.P. Regnault, P. Bourges, P. Burlet, C. Vettier, J.Y. Henry, in Frontiers in Solid State Sciences: Magnetism and Superconductivity (World Scientific, Singapore, 1994)

  • M. Manojlović, M. Pavkov, M. Škrinjar, M. Pantić, D. Kapor, S. Stojanović, Phys. Rev. B 68, 014435 (2003)

    Google Scholar 

  • S.V. Tyablikov, The Methods in the Quantum Theory of Magnetism (Plenum Press, New York, 1967)

  • H.B. Callen, Phys. Rev. 130, 890 (1963)

    Google Scholar 

  • M. Rutonjski, S. Radošević, M. Škrinjar, M. Pavkov-Hrvojević, D. Kapor, M. Pantić, Phys. Rev. B 76, 172506 (2007)

    Google Scholar 

  • D.C. Mattis, The Theory of Magnetism I (Springer-Verlag, 1981)

  • T. Huberman, R. Coldea, R.A. Cowley, D.A. Tennant, R.L. Leheny, R.J. Christianson, C.D. Frost, Phys. Rev. B 72, 014413 (2005)

    Google Scholar 

  • P. Fröbrich, P.J. Kuntz, Phys. Rep. 432, 223 (2006)

  • V.Yu. Irkhin, A.A. Katanin, M.I. Katsnelson, Phys. Rev. B 60, 1082 (1999)

    Google Scholar 

  • Ai-Yuan Hu, Yuan Chen, Physica A 387, 3471 (2008)

  • I.J. Junger, D. Ihle, L. Bogacz, W. Janke, Phys. Rev. B 77, 174411 (2008)

    Google Scholar 

  • I. Junger, D. Ihle, J. Richter, A. Klümper, Phys. Rev. B 70, 104419 (2004)

    Google Scholar 

  • J. Kondo, K. Yamaji, Prog. Theor. Phys. 47, 807 (1972)

    Google Scholar 

  • E.V. Kuz’min, Fiz. Nizk. Temp. 29, 764 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Radošević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radošević, S., Pavkov-Hrvojević, M., Pantić, M. et al. Magnetic properties of quasi two-dimensional antiferromagnet Rb2MnCl4 with XXZ interaction anisotropy. Eur. Phys. J. B 68, 511–517 (2009). https://doi.org/10.1140/epjb/e2009-00127-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00127-2

PACS

Navigation