Skip to main content
Log in

Euler-like modelling of dense granular flows: application to a rotating drum

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

General conservation equations are derived for 2D dense granular flows from the Euler equation within the Boussinesq approximation. In steady flows, the 2D fields of granular temperature, vorticity and stream function are shown to be encoded in two scalar functions only. We checked such prediction on steady surface flows in a rotating drum simulated through the Non-Smooth Contact Dynamics method even though granular flows are dissipative and therefore not necessarily compatible with Euler equation. Finally, we briefly discuss some possible ways to predict theoretically these two functions using statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996)

    Google Scholar 

  • S.B. Savage, D.J. Jeffrey, J. Fluid Mech. 110, 255 (1981)

    Google Scholar 

  • J.T. Jenkins, S.B. Savage, J. Fluid Mech. 130, 187 (1983)

    Google Scholar 

  • C.K.K. Lun, S.B. Savage, Acta Mech. 63, 15 (1986)

    Google Scholar 

  • R.M. Nedderman, Statics and Kinematics of Granular Materials (Cambridge University Press, Cambridge, 1992)

  • G.D.R. Midi, Eur. Phys. J. E 14, 341 (2004)

    Google Scholar 

  • P. Mills, D. Loggia, M. Texier, Europhys. Lett. 45, 733 (1999)

    Google Scholar 

  • B. Andreotti, S. Douady, Phys. Rev. E 63, 031305 (2001)

    Google Scholar 

  • J.T. Jenkins, D.M. Hanes, Phys. Fluids 14, 1228 (2002)

    Google Scholar 

  • D. Bonamy, P. Mills, Europhys. Lett. 63, 42 (2003)

    Google Scholar 

  • J. Rajchenbach, Phys. Rev. Lett 90, 144302 (2003)

    Google Scholar 

  • S.B. Savage, J. Fluid Mech. 377, 1 (1998)

    Google Scholar 

  • L. Bocquet, W. Losert, D. Schalk, T.C. Lubensky, J.P. Gollub, Phys. Rev. E 65, 01307 (2002)

    Google Scholar 

  • L.S. Mohan, K.K. Rao, P.R. Nott, J. Fluid Mech. 457, 377 (2002)

    Google Scholar 

  • I.S. Aranson, L.S. Tsimring, Phys. Rev. E 65 061303 (2002)

    Google Scholar 

  • O. Pouliquen, R. Gutfraind, Phys. Rev. E 53, 552 (1996)

    Google Scholar 

  • G. Debregeas, C. Josserand, Europhys. Lett. 52, 137 (2000)

    Google Scholar 

  • O. Pouliquen, Y. Forterre, S.L. Dizes, Adv. Complex System 4, 441 (2001)

    Google Scholar 

  • A. Lemaitre, Phys. Rev. Lett. 89, 064303 (2002)

    Google Scholar 

  • I. Iordanoff, M.M. Khonsari, ASME J. Tribol. 14, 341 (2004)

    Google Scholar 

  • F. Da Cruz, S. Eman, M. Prochnow, J.-N. Roux, F. Chevoir, Phys. Rev. E 72, 021309 (2005)

    Google Scholar 

  • P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006)

    Google Scholar 

  • N. Leprovost, B. Dubrulle, P.-H. Chavanis, Phys. Rev. E 71, 036311 (2005)

    Google Scholar 

  • N. Leprovost, B. Dubrulle, P.-H. Chavanis, Phys. Rev. E 73, 046308 (2006)

    Google Scholar 

  • R. Monchaux, F. Ravelet, B. Dubrulle, A. Chiffaudel, F. Daviaud, Phys. Rev. Lett. 96, 124502 (2006)

    Google Scholar 

  • R. Monchaux, P.-P. Cortet, P.-H. Chavanis, A. Chiffaudel, F. Daviaud, P. Diribarne, B. Dubrulle, Phys. Rev. Lett. 101, 174502 (2008)

    Google Scholar 

  • M. Renouf, D. Bonamy, F. Dubois, P. Alart, Phys. Fluids 17, 103303 (2005)

    Google Scholar 

  • J. Rajchenbach, Adv. Phys. 49, 229 (2000)

    Google Scholar 

  • D. Bonamy, F. Daviaud, L. Laurent, Phys. Fluids 14, 1666 (2002)

    Google Scholar 

  • D. Bonamy, F. Daviaud, L. Laurent, P. Mills, Gran. Matt. 4, 183 (2003)

    Google Scholar 

  • P. Jop, Y. Forterre, O. Pouliquen, J. Fluid Mech. 541, 167 (1990)

    Google Scholar 

  • R.J. Speedy, J. Chem. Phys. 110, 4559 (1999)

    Google Scholar 

  • P.-H. Chavanis, J. Sommeria, Phys Rev. Lett. 78, 3302 (1997)

    Google Scholar 

  • P.-H. Chavanis, J. Sommeria, Phys Rev. E 65, 026302 (2002)

    Google Scholar 

  • J.-J. Moreau, in Non Smooth Mechanics and Applications, CISM Courses and Lectures, edited by P.-D. Panagiotopoulos (Springer-Verlag, Wien, New York, 1988), p. 1

  • M. Jean, Comp. Meth. Appl. Mech. Engrg. 177, 235 (1999)

    Google Scholar 

  • M. Renouf, P. Alart, Comp. Meth. Appl. Mech. Engrg. 194, 2019 (2004)

  • M. Renouf, F. Dubois, P. Alart, J. Comput. Appl. Math. 168, 375 (2004)

    Google Scholar 

  • D. Bonamy, F. Daviaud, L. Laurent, M. Bonetti, J.-P. Bouchaud, Phys. Rev. Lett. 89, 034301 (2002)

    Google Scholar 

  • O. Reynolds, Phyl. Mag. Ser. 5 20, 469 (1885)

    Google Scholar 

  • T.S. Komatsu, S. Inagasaki, N. Nakagawa, S. Nasuno, Phys. Rev. Lett. 86, 1757 (2001)

    Google Scholar 

  • S. Courrech du Pont, R. Fisher, P. Gondret, B. Perrin, M. Rabaud, Phys. Rev. Lett. 94, 048003 (2005)

    Google Scholar 

  • J. Crassous, J.-F. Metayer, P. Richard, C. Laroche, J. Stat. Mech., P03009 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Daviaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonamy, D., Chavanis, PH., Cortet, PP. et al. Euler-like modelling of dense granular flows: application to a rotating drum. Eur. Phys. J. B 68, 619–627 (2009). https://doi.org/10.1140/epjb/e2009-00123-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00123-6

PACS

Navigation