Skip to main content
Log in

Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Thermal conductivity in semiconductors is investigated through the phonon transport description. From the former studies based on the gas kinetic theory to the recent ones using the Monte Carlo methods or the radiative multifux models, each technique involves the dispersion properties of the crystal lattice. Besides, most of these studies have been done in the frame of the relaxation time approximation of collision processes. In this study, the importance of the choice of the dispersion curves and time relaxation parameters are pointed out. A complete description of the transverse umklapp interaction is provided without any adjustment parameters. New insights of the energy conservation surface calculation, involved in phonon-phonon time relaxation expression, are provided. Using simple and more complex models, we have determined the heat transport properties, in the temperature range from 50 K to 1000 K in bulk silicon. We especially focused our attention on the thermal conductivity as a function of the phonon anharmonic resistive mechanisms for two models of dispersion: “linear” and “quadratic”. We demonstrate that very different thermal conductivity properties can be calculated according to the chosen description of lattice vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Klemens, Proc. Roy. Soc. A 208, 108 (1951)

    Google Scholar 

  • P. Klemens, Solid State Physics, Vol. 7 (Academic Press Inc., New York, 1958)

  • J. Callaway, Phys. Rev. 113, 1046 (1959)

    Google Scholar 

  • M. Holland, Phys. Rev. 132, 2461 (1963)

    Google Scholar 

  • P. Chantrenne, J. Barrat, X. Blase, J. Gale, J. Appl. Phys. 97, 104318 (2005)

    Google Scholar 

  • M. Modest, Radiative Heat Transfer, 2nd edn. (Academic Press, San Diego, 2003)

  • A. Majumdar, ASME J. Heat Transfer 115, 7 (1993)

    Google Scholar 

  • G. Chen, ASME J. Heat Transfer 119, 220 (1997)

    Google Scholar 

  • K. Goodson, ASME J. Heat Transfer 118, 279 (1996)

    Google Scholar 

  • D. Lemonnier, M. Lallemand, Int. J. Heat Technology 18, 63 (2000)

    Google Scholar 

  • G. Chen, Phys. Rev. Lett. 86, 2297 (2001)

    Google Scholar 

  • C. Jacobini, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

    Google Scholar 

  • M. Fischetti, S. Laux, Phys. Rev. B 38, 9721 (1988)

    Google Scholar 

  • P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, S. Goodnick, Phys. Rev. B 39, 7852 (1989)

    Google Scholar 

  • M. Fischetti, S. Laux, Phys. Rev. B 48, 2244 (1993)

    Google Scholar 

  • E. Pop, R. Dutton, K. Goodson, J. Appl. Phys. 96, 4998 (2004)

    Google Scholar 

  • E. Pop, R. Dutton, K. Goodson, Appl. Phys. Lett. 86, 082101 (2005)

    Google Scholar 

  • R. Peterson, ASME J. Heat Transfer 116, 815 (1994)

    Google Scholar 

  • S. Mazumder, A. Majumdar, ASME J. Heat Transfer 123, 749 (2001)

    Google Scholar 

  • D. Lacroix, K. Joulain, D. Lemonnier, Phys. Rev. B 72, 064305 (2005)

    Google Scholar 

  • R. Tubino, L. Piseri, G. Zerbi, J. Chem. Phys. 56, 1022 (1972)

    Google Scholar 

  • G. Srivastava, The physics of phonons (Adam Hilger, Bristol, UK, 1990)

  • S. Usher, G. Srivastava, Phys. Rev. B 50, 14179 (1994)

    Google Scholar 

  • J. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960)

  • L. Landau, G. Rumer, Phys. Z. Sowjetunion 11, 18 (1937)

    Google Scholar 

  • Y.J. Han, P. Klemens, Phys. Rev. B 48, 6033 (1993)

    Google Scholar 

  • M. Roufosse, P. Klemens, Phys. Rev. B 7, 5379 (1973)

    Google Scholar 

  • Y.J. Han, Phys. Rev. B 54, 8977 (1996)

    Google Scholar 

  • P. Klemens, Thermochimica Acta 218, 247 (1993)

    Google Scholar 

  • N. Ashcroft, N. Mermin, Solid state physics, international edn. (Saunders College, Philiadelphia, 1976)

  • C.J. Glassbrenner, G.A. Slack, Phys. Rev. 134, A1058 (1964)

  • C. Dames, A broad range of phonon mean free paths is important for heat conduction, in Proceedings of MNHT2008 (Micro/Nanoscale Heat Transfer International Conference, January 6–9, Tainan, Taiwan, 2008)

  • D. Terris, K. Joulain, D. Lacroix, D. Lemonnier, Arxiv (2008), submitted in january 2008, http://arxiv.org/abs/0803.3954

  • A. Balandin, K.L. Wang, Phys. Rev. B 58, 1544 (1998)

    Google Scholar 

  • C. Dames, G. Chen, J. Appl. Phys. 89, 682 (2003)

    Google Scholar 

  • Semiconductors on nsm, http://www.ioffe.rssi.ru/SVA/NSM/Semicond/

  • P. Klemens, Proc. Phys. Soc. A 68, 1113 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lacroix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacroix, D., Traore, I., Fumeron, S. et al. Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms. Eur. Phys. J. B 67, 15–25 (2009). https://doi.org/10.1140/epjb/e2008-00464-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00464-6

PACS

Navigation