Skip to main content
Log in

A self-organized model for network evolution

Coupling network evolution and extremal dynamics

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Here we provide a detailed analysis, along with some extensions and additonal investigations, of a recently proposed [1] self-organized model for the evolution of complex networks. Vertices of the network are characterized by a fitness variable evolving through an extremal dynamics process, as in the Bak-Sneppen [2] model representing a prototype of Self-Organized Criticality. The network topology is in turn shaped by the fitness variable itself, as in the fitness network model [3]. The system self-organizes to a nontrivial state, characterized by a power-law decay of dynamical and topological quantities above a critical threshold. The interplay between topology and dynamics in the system is the key ingredient leading to an unexpected behaviour of these quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Garlaschelli, A. Capocci, G. Caldarelli, Nature Physics, 3, 813 (2007)

    Article  ADS  Google Scholar 

  2. P. Bak, K. Sneppen Phys. Rev. Lett. 71, 4083 (1993)

    Article  ADS  Google Scholar 

  3. G. Caldarelli, A. Capocci, P. De Los Rios, M.A. Muñoz, Phys. Rev. Lett. 89, 258702 (2002)

    Article  ADS  Google Scholar 

  4. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2001)

    Article  ADS  Google Scholar 

  5. G. Caldarelli, Scale-Free Networks (Oxford University Press, Oxford, 2007)

    MATH  Google Scholar 

  6. V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani, Proc. Nat. Ac. Sc. USA 103, 2015 (2006)

    Article  ADS  Google Scholar 

  7. Large Scale Structure and Dynamics of Complex Networks, edited by G. Caldarelli, A. Vespignani (World Scientific Press, Singapore, 2007)

    MATH  Google Scholar 

  8. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  9. D. Garlaschelli, S. Battiston, M. Castri, V.D.P. Servedio, G. Caldarelli, Phys. A 350, 491 (2005)

    Article  MathSciNet  Google Scholar 

  10. D. Garlaschelli, M.I. Loffredo, Phys. Rev. Lett. 93, 188701 (2004)

    Article  ADS  Google Scholar 

  11. K.-I. Goh, B. Kahng, D. Kim Phys. Rev. Lett. 87, 278701 (2001)

    Article  ADS  Google Scholar 

  12. B. Söoderberg, Phys. Rev. E 66, 066121 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.G. Zimmermann, V.M. Eguíluz, M. San Miguel, Phys. Rev. E 69, 065102 (2004)

    Article  ADS  Google Scholar 

  14. P. Holme, M.E.J. Newman, Phys. Rev. E 74, 056108 (2006)

    Article  ADS  Google Scholar 

  15. T. Gross, C.J.D. D’Lima, B. Blasius, Phys. Rev. Lett. 96, 208701 (2006)

    Article  ADS  Google Scholar 

  16. G. Bianconi, M. Marsili, Phys. Rev. E 70, 035105(R) (2004)

  17. P. Fronczak, A. Fronczak, J.A. Holyst, Phys. Rev. E 73, 046117 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Bak, C. Tang, K. Weisenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  Google Scholar 

  19. P. Grassberger, Phys. Lett. A 200, 277 (1995)

    Article  ADS  Google Scholar 

  20. M. Felici, G. Caldarelli, A. Gabrielli, L. Pietronero, Phys. Rev. Lett. 86, 1896 (2001)

    Article  ADS  Google Scholar 

  21. P. De Los Rios, M. Marsili, M. Vendruscolo, Phys. Rev. Lett. 80, 5746 (1998)

    Article  ADS  Google Scholar 

  22. H. Flyvbjerg, K. Sneppen, P. Bak, Phys. Rev. Lett. 71, 4087 (1993)

    Article  ADS  Google Scholar 

  23. R.V. Kulkarni, E. Almaas, D. Stroud, ArXiv:cond-mat/9905066

  24. Y. Moreno, A. Vazquez, Europhys. Lett. 57, 765 (2002)

    Article  ADS  Google Scholar 

  25. D. Garlaschelli, G. Caldarelli, L. Pietronero, Nature 423, 165 (2003)

    Article  ADS  Google Scholar 

  26. G. Caldarelli, P.G. Higgs, A.J. McKane, Journ. Theor. Biol. 193, 345 (1998)

    Article  Google Scholar 

  27. J. de Boer, A.D. Jackson, T. Wettig, Phys. Rev. E 51, 1059 (1995)

    Article  ADS  Google Scholar 

  28. J. Park, M.E.J. Newman, Phys. Rev. E 68, 026112 (2003)

    Article  ADS  Google Scholar 

  29. D. Garlaschelli, M.I. Loffredo, ArXiv:cond-mat/0609015

  30. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Maslov, K. Sneppen, A. Zaliznyak, Physica A 333, 529 (2004)

    Article  ADS  Google Scholar 

  32. M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 68, 036112 (2003)

    Article  ADS  Google Scholar 

  33. V.D.P. Servedio, G. Caldarelli, P. Buttà, Phys. Rev. E 70, 056126 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Caldarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldarelli, G., Capocci, A. & Garlaschelli, D. A self-organized model for network evolution. Eur. Phys. J. B 64, 585–591 (2008). https://doi.org/10.1140/epjb/e2008-00243-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00243-5

PACS

Navigation