Skip to main content
Log in

Emergent stability in complex network dynamics

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

The stable functionality of networked systems is a hallmark of their natural ability to coordinate between their multiple interacting components. Yet, real-world networks often appear random and highly irregular, raising the question of what are the naturally emerging organizing principles of complex system stability. The answer is encoded within the system’s stability matrix—the Jacobian—but is hard to retrieve, due to the scale and diversity of the relevant systems, their broad parameter space and their nonlinear interaction dynamics. Here we introduce the dynamic Jacobian ensemble, which allows us to systematically investigate the fixed-point dynamics of a range of relevant network-based models. Within this ensemble, we find that complex systems exhibit discrete stability classes. These range from asymptotically unstable (where stability is unattainable) to sensitive (where stability abides within a bounded range of system parameters). Alongside these two classes, we uncover a third asymptotically stable class in which a sufficiently large and heterogeneous network acquires a guaranteed stability, independent of its microscopic parameters and robust against external perturbation. Hence, in this ensemble, two of the most ubiquitous characteristics of real-world networks—scale and heterogeneity—emerge as natural organizing principles to ensure fixed-point stability in the face of changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: The dynamic Jacobian ensemble.
Fig. 2: Testing ground for the \({\mathbb{E}}(A,G,{{\Omega }})\) ensemble.
Fig. 3: Emergent patterns in the dynamic ensemble \({\mathbb{E}}(A,G,{{\Omega }})\).
Fig. 4: Three classes of dynamic stability.
Fig. 5: Will a large complex system be stable?
Fig. 6: Emergent stability in large heterogeneous networks.

Similar content being viewed by others

Data availability

All empirical network data to retrieve the results shown here are available via GitLab at https://gitlab.com/meenachandrakala/Dynamic_Stability/-/tree/master/Dynamic_Stability.

Code availability

All code to reproduce the results shown here is available via GitLab at https://gitlab.com/meenachandrakala/Dynamic_Stability/-/tree/master/Dynamic_Stability.

References

  1. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    ADS  Google Scholar 

  2. Dobson, I., Carreras, B. A., Lynch, V. E. & Newman, D. E. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization. Chaos 17, 026103 (2007).

    MATH  ADS  Google Scholar 

  3. Duan, D. et al. Universal behavior of cascading failures in interdependent networks. Proc. Natl Acad. Sci. USA 116, 22452–22457 (2019).

    MathSciNet  MATH  ADS  Google Scholar 

  4. Motter, A. E. & Lai, Y.-C. Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002).

    ADS  Google Scholar 

  5. Crucitti, P., Latora, V. & Marchiori, M. Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004).

    ADS  Google Scholar 

  6. Achlioptas, D., D’Souza, R. M. & Spencer, J. Explosive percolation in random networks. Science 323, 1453–1455 (2009).

    MathSciNet  MATH  ADS  Google Scholar 

  7. Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).

    ADS  Google Scholar 

  8. Boccaletti, S. et al. Explosive transitions in complex networks’ structure and dynamics: percolation and synchronization. Phys. Rep. 660, 1–94 (2016).

    MathSciNet  MATH  ADS  Google Scholar 

  9. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    MathSciNet  MATH  ADS  Google Scholar 

  10. Danziger, M. M., Bonamassa, Ivan, Boccaletti, Stefano & Havlin, Shlomo Dynamic interdependence and competition in multilayer networks. Nat. Phys. 15, 178–185 (2019).

    Google Scholar 

  11. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    ADS  Google Scholar 

  12. Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001).

    Google Scholar 

  13. Schreier, H. I., Soen, Y. & Brenner, N. Exploratory adaptation in large random networks. Nat. Commun. 8, 14826 (2017).

    ADS  Google Scholar 

  14. Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998).

    ADS  Google Scholar 

  15. Arnold, V. I. Ordinary Differential Equations (MIT Press, 1973).

  16. Hirsch, M. W. & Smale, S. Differential Equations, Dynamical Systems and Linear Algebra (Academic Press, 1974).

  17. McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    Google Scholar 

  18. O’Sullivan, J. D., Knell, R. J. & Rossberg, A. G. Metacommunity-scale biodiversity regulation and the self-organised emergence of macroecological patterns. Ecol. Lett. 22, 1428–1438 (2019).

    Google Scholar 

  19. Barbier, M., de Mazancourt, C., Loreau, M. & Bunin, G. Fingerprints of high-dimensional coexistence in complex ecosystems. Phys. Rev. X 11, 011009 (2021).

    Google Scholar 

  20. Caldarelli, G. Scale-Free Networks: Complex Webs in Nature and Technology (Oxfrod Univ. Press, 2007).

  21. May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    Google Scholar 

  22. Barzel, B. & Barabási, A.-L. Universality in network dynamics. Nat. Phys. 9, 673–681 (2013).

    Google Scholar 

  23. Harush, U. & Barzel, B. Dynamic patterns of information flow in complex networks. Nat. Commun. 8, 2181 (2017).

    ADS  Google Scholar 

  24. Hens, C., Harush, U., Cohen, R., Haber, S. & Barzel, B. Spatiotemporal propagation of signals in complex networks. Nat. Phys. 15, 403–412 (2019).

    Google Scholar 

  25. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–958 (2015).

    MathSciNet  ADS  Google Scholar 

  26. Dodds, P. S., Muhamad, R. & Watts, D. J. An experimental study of search in global social networks. Science 301, 827–829 (2003).

    ADS  Google Scholar 

  27. Brockmann, D., David, V. & Gallardo, A. M. Human mobility and spatial disease dynamics. Rev. Nonlinear Dyn. Complex. 2, 1 (2009).

    MathSciNet  MATH  Google Scholar 

  28. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. 9, 770–780 (2008).

    Google Scholar 

  29. Murray, J. D. Mathematical Biology (Springer, 1989).

  30. Barzel, B. & Biham, O. Binomial moment equations for stochastic reaction systems. Phys. Rev. Lett. 106, 150602 (2011).

    ADS  Google Scholar 

  31. Barzel, B. & Biham, O. Stochastic analysis of complex reaction networks using binomial moment equations. Phys. Rev. E 86, 031126 (2012).

    ADS  Google Scholar 

  32. Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).

    Google Scholar 

  33. Holland, J. N., DeAngelis, D. L. & Bronstein, J. L. Population dynamics and mutualism: functional responses of benefits and costs. Am. Nat. 159, 231–244 (2002).

    Google Scholar 

  34. Wodarz, D., Christensen, J. P. & Thomsen, A. R. The importance of lytic and nonlytic immune responses in viral infections. Trends Immunol. 23, 194–200 (2002).

    Google Scholar 

  35. Berlow, E. L. et al. Simple prediction of interaction strengths in complex food webs. Proc. Natl Acad. Sci. USA 106, 187–191 (2009).

    ADS  Google Scholar 

  36. Hayes, J. F. & Ganesh Babu, T. V. J. Modeling and Analysis of Telecommunications Networks (John Wiley & Sons, 2004).

  37. Newman, M. E. J. Networks—An Introduction (Oxford Univ. Press, 2010).

  38. Yan, G., Martinez, N. D. & Liu, Y.-Y. Degree heterogeneity and stability of ecological networks. J. R. Soc. Interface 14, 20170189 (2017).

    Google Scholar 

  39. Almendral, J. A. & Díaz-Guilera, A. Dynamical and spectral properties of complex networks. New J. Phys. 9, 187 (2007).

    ADS  Google Scholar 

  40. Van Mieghem, P. Epidemic phase transition of the SIS type in network. Europhys. Lett. 97, 48004 (2012).

    ADS  Google Scholar 

  41. Van Mieghem, P. Graph Spectra for Complex Networks (Cambridge Univ. Press, 2010).

  42. Milojević, S. Power-law distributions in information science: making the case for logarithmic binning. J. Am. Soc. Inf. Sci. Technol. 61, 2417–2425 (2010).

    Google Scholar 

  43. Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    ADS  Google Scholar 

  44. Tarnowski, W., Neri, I. & Vivo, P. Universal transient behavior in large dynamical systems on networks. Phys. Rev. Research 2, 023333 (2020).

    ADS  Google Scholar 

  45. Sinha, S. & Sinha, S. Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics. Phys. Rev. E 71, 020902 (2005).

    ADS  Google Scholar 

  46. Kirk, P., Rolando, D. M. Y., MacLean, A. L. & Stumpf, M. P. H. Conditional random matrix ensembles and the stability of dynamical systems. New J. Phys. 17, 080325 (2015).

    MathSciNet  MATH  Google Scholar 

  47. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    MATH  ADS  Google Scholar 

  48. Schmetterer, L. & Sigmund, K. (eds) Hans Hahn Gesammelte Abhandlungen Band 1/Hans Hahn Collected Works Volume 1 (Springer, 1995).

  49. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (2002).

    Google Scholar 

  50. Kuramoto, Y. Chemical Oscillations, Waves and Turbulence (Springer, 1984).

  51. Kundu, P., Hens, C., Barzel, B. & Pal, P. Perfect synchronization in networks of phase-frustrated oscillators. Europhys. Lett. 120, 40002 (2018).

    ADS  Google Scholar 

  52. Stouffer, D. B., Camacho, J., Guimerà, R., Ng, C. A. & Nunes Amaral, L. A. Quantitative patterns in the structure of model and empirical food webs. Ecology 86, 1301–1311 (2005).

    Google Scholar 

Download references

Acknowledgements

This work is dedicated in memory of Robert May. We wish to thank I. Conforti for designing inspiring artwork to accompany our scientific research. C.M. thanks the Planning and Budgeting Committee (PBC) of the Council for Higher Education, Israel, for support. C.M. is also supported by the INSPIRE-Faculty grant (code IFA19-PH248) of the Department of Science and Technology, India. C.H. is supported by the INSPIRE-Faculty grant (code IFA17-PH193) of the Department of Science and Technology, India. S.H. has contributed to this work while visiting the mathematics department of Rutgers University, New Brunswick. S.B. acknowledges funding from the project EXPLICS granted by the Italian Ministry of Foreign Affairs and International Cooperation. This research was also supported by the Israel Science Foundation (grant no. 499/19), the Israel-China ISF-NSFC joint research program (grant no. 3552/21), the US National Science Foundation CRISP award no. 1735505, and by the Bar-Ilan University Data Science Institute grant for data science research. In memory of Robert May.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed and planned the research and derived the analytical results. C.M., with the aid of C.H. and S.A., conducted the data analysis and numerical simulations. B.B. was the lead writer of the paper.

Corresponding authors

Correspondence to Chandrakala Meena or Baruch Barzel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Axel Rossberg, Neo Martinez and Jobst Heitzig for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, Figs. 1–9 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, C., Hens, C., Acharyya, S. et al. Emergent stability in complex network dynamics. Nat. Phys. 19, 1033–1042 (2023). https://doi.org/10.1038/s41567-023-02020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02020-8

  • Springer Nature Limited

This article is cited by

Navigation