Skip to main content
Log in

The effect of low-frequency oscillations on cardio-respiratory synchronization

Observations during rest and exercise

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show that the transitions which occur between close orders of synchronization in the cardiorespiratory system are mainly due to modulation of the cardiac and respiratory processes by low-frequency components. The experimental evidence is derived from recordings on healthy subjects at rest and during exercise. Exercise acts as a perturbation of the system that alters the mean cardiac and respiratory frequencies and changes the amount of their modulation by low-frequency oscillations. The conclusion is supported by numerical evidence based on a model of phase-coupled oscillators, with white noise and lowfrequency noise. Both the experimental and numerical approaches confirm that low-frequency oscillations play a significant role in the transitional behavior between close orders of synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Hales, Statistical Essays II, Hæmastatisticks (Innings Manby, London, 1773)

    Google Scholar 

  2. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization-A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  3. C. Schäfer, M.G. Rosenblum, J. Kurths, H.H. Abel, Nature 392, 239 (1998)

    Article  ADS  Google Scholar 

  4. M.B. Lotrič, A. Stefanovska, Physica A 283, 451 (2000)

    Article  ADS  Google Scholar 

  5. A. Stefanovska, M. Bračič Lotrič, S. Strle, H. Haken, Physiol. Meas. 22, 535 (2001)

    Article  Google Scholar 

  6. A. Stefanovska, Nonlinear Phenomena in Complex Systems 5, 462 (2002)

    MathSciNet  Google Scholar 

  7. C. Schäfer, M.G. Rosenblum, H.H. Abel, J. Kurths, Phys. Rev. E 60, 857 (1999)

    Article  ADS  Google Scholar 

  8. S. Rzeczinski, N.B. Janson, A.G. Balanov, P.V.E. McClintock, Phys. Rev. E 66, 051909 (2002)

    Article  ADS  Google Scholar 

  9. A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hožič, F. Bajrović, S. Ribarič, Phys. Rev. Lett. 85, 4831 (2000)

    Article  ADS  Google Scholar 

  10. B. Musizza, A. Stefanovska, P.V.E. McClintock, M. Paluš, J. Petrovčič, S. Ribarič, F.F. Bajrović, J. Physiol. 580, 315 (2007)

    Article  Google Scholar 

  11. M. Entwistle, A. Bandrivskyy, B. Musizza, A. Stefanovska, P.V.E. McClintock, A. Smith, Br. J. Anæsth. 93, 608P (2004)

    Google Scholar 

  12. E. Toledo, S. Akselrod, I. Pinhas, D. Aravot, Med. Eng. & Phys. 24, 45 (2002)

    Article  Google Scholar 

  13. D.L. Eckberg, J. Physiol. (Lond.) 548, 339 (2003)

    Google Scholar 

  14. D.C. Galletly, P.D. Larsen, Br. J. Anæsth. 79, 35 (1997)

    Google Scholar 

  15. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984)

    MATH  Google Scholar 

  16. P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.J. Freund, Phys. Rev. Lett. 81, 3291 (1998)

    Article  ADS  Google Scholar 

  17. L. Glass, Nature 410, 277 (2001)

    Article  ADS  Google Scholar 

  18. A. Stefanovska, M. Bračič, Contemp. Phys. 40, 31 (1999)

    Article  ADS  Google Scholar 

  19. R. Mrowka, A. Patzak, M. Rosenblum, Int. J. Bifurcation and Chaos. 10, 2479 (2000)

    MATH  Google Scholar 

  20. R. Bartsch, J.W. Kantelhardt, T. Penzel, S. Havlin, Phys. Rev. Lett. 98, 054102 (2007)

    Article  ADS  Google Scholar 

  21. M.B. Lotrič, A. Stefanovska, D. Štajer, V. Urbančič-Rovan, Physiol. Meas. 21, 441 (2000)

    Article  Google Scholar 

  22. F.O. Cottin, C. Medigue, P.M. Lepretre, Y. Papelier, J. Koralsztein, V. Billat, Med. Sci. Sports Exerc. 36, 594 (2004)

    Article  Google Scholar 

  23. K. Nomura, Y. Takei, Y. Yanagida, Eur. J. Appl. Physiol. 89, 221 (2003)

    Article  Google Scholar 

  24. D. Morin, D. Viala, J. Neurosci. 22, 4756 (2002)

    Google Scholar 

  25. I.G. Malkin, Some Problems in Nonlinear Oscillation Theory (Gostechizdat, Moscow, 1956)

    Google Scholar 

  26. M. Paluš, A. Stefanovska, Phys. Rev. E 67, 055201(R) (2003)

    ADS  Google Scholar 

  27. A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Phys. Rev. Lett. 100, 084101 (2008)

    Article  ADS  Google Scholar 

  28. A. Makse, S. Havlin, M. Schwart, H.E. Stanley, Phys. Rev. E 53, 5445 (1996)

    Article  ADS  Google Scholar 

  29. M.G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, R. Mrowka, Phys. Rev. E. 65, 041909 (2002)

    Article  ADS  Google Scholar 

  30. J. Jamšek, A. Stefanovska, P.V.E. McClintock, Phys. Med. Biol. 49, 4407 (2004)

    Article  Google Scholar 

  31. V.N. Smelyanskiy, D.G. Luchinsky, A. Stefanovska, P.V.E. McClintock, Phys. Rev. Lett. 94, 098101 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stefanovska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenwright, D.A., Bahraminasab, A., Stefanovska, A. et al. The effect of low-frequency oscillations on cardio-respiratory synchronization. Eur. Phys. J. B 65, 425–433 (2008). https://doi.org/10.1140/epjb/e2008-00199-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00199-4

PACS

Navigation