Skip to main content
Log in

Frequency Analysis of Oscillations of External Respiration Parameters and Heart Rate in the VLF Range

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Very-low-frequency oscillations of respiratory and gas exchange parameters were analyzed in subjects at rest and then compared with the heart rate variability. Time-frequency analysis demonstrated that variability of the main parameters of pulmonary ventilation, gas exchange, and heart rate had an oscillatory nature. The frequency characteristics were shown to coincide in the range of 0.0043–0.016 Hz. Using dynamic visualization, it was found that changes in the Fourier spectra occurred synchronously for the gas exchange parameters and heart rate variability. Cross-correlation analysis revealed a phase shift between fluctuations in heart rate variability and fluctuations in gas exchange rates. Most likely, synchronous slow fluctuations in both the duration of the RR-interval of the ECG and external respiration parameters reflect the functional state of the human cardiorespiratory system. This information opens a new direction in the diagnosis of oxygen transport disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Goodman, IEEE Trans. Biomed. Eng. 11 (3), 64 (1964). https://doi.org/10.1109/tbme.1964.4502311

    Article  Google Scholar 

  2. L. Goodman, D. Alexander, and D. Fleming, IEEE Trans. Biomed. Eng. 13 (2), 57 (1966). https://doi.org/10.1109/tbme.1966.4502407

    Article  Google Scholar 

  3. M. P. Hlastala, B. Wranne, and C. J. Lenfant, J. Appl. Physiol. 34 (5), 670 (1973).

    Article  Google Scholar 

  4. A. P. Kuznetsov, I. R. Sataev, N. V. Stankevich, and L. V. Tyuryukina, Physics of Quasi-Periodic Oscillations (Nauka, Saratov, 2013) [in Russian].

    Google Scholar 

  5. H. V. Huikuri, T. Makikallio, K. E. Airaksinen, et al., J. Am. Coll. Cardiol. 34 (7), 1878 (1999). https://doi.org/10.1016/s0735-1097(99)00468-4

    Article  Google Scholar 

  6. J. Jaworski and J. H. T. Bates, J. Theor. Biol. 469, 148 (2019). https://doi.org/10.1016/j.jtbi.2019.03.001

    Article  ADS  Google Scholar 

  7. T. Yano, C.-S. Lian, T. Arimitsu, et al., Acta Physiol. Hung. 100 (3), 312 (2013). https://doi.org/10.1556/APhysiol.100.2013.007

    Article  Google Scholar 

  8. T. Yano, C.-S. Lian, T. Arimitsu, et al., Physiol Res. 62 (3), 297 (2013).

    Article  Google Scholar 

  9. T. Yano, R. Afroundeh, et al., Acta Physiol. Hung. 101 (1), 103 (2014). https://doi.org/10.1556/APhysiol.100.2013.018

    Article  Google Scholar 

  10. T. Yano, C.-S. Lian, R. Afroundeh, et al., Biol. Sport. 31 (1), 15 (2014). https://doi.org/10.5604/20831862.1083274

    Article  Google Scholar 

  11. T. Yano, R. Afroundeh, et al., Acta Physiol. Hung. 101 (2), 143 (2014). https://doi.org/10.1556/APhysiol.101.2014.2.2

    Article  Google Scholar 

  12. T. Yano, W. Widjaja, et al., Acta Physiol. Hung. 102 (2), 189 (2015). https://doi.org/10.1556/036.102.2015.2.9

    Article  Google Scholar 

  13. T. Yano., R. Afroundeh, K. Shirakawa, et al., Acta Physiol. Hung. 102 (3), 274 (2015). https://doi.org/10.1556/036.102.2015.3.5

    Article  Google Scholar 

  14. T. Yano, R. Afroundeh, et al., Physiol. Res. 65 (2), 259 (2016).

    Article  Google Scholar 

  15. O. V. Grishin, V. G. Grishin, et al., World Appl. Sci. J., No. 19 (8), 1133 (2012).

  16. O. V. Grishin, V. G. Grishin, and Yu. V. Kovalenko, Hum. Physiol. 38 (2), 184 (2012).

    Google Scholar 

  17. V. G. Grishin, O. V. Grishin, et al., Ross. Fiziol. Zh. im. I.M. Sechenova 105 (9), 1154 (2019).

    Article  Google Scholar 

  18. L. Cohen. IEEE Proc. 77 (7), 941 (1989). https://doi.org/10.1109/5.30749

  19. R. M. Rangaiyan, Analysis of Bioedical Signals, Ed. by A. P. Nemirko (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  20. J. A. Hirsch and B. Bishop, J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 53 (5), 1281 (1982). https://doi.org/10.1152/jappl.1982.53.5.1281

    Article  Google Scholar 

  21. V. Pilyugin, E. Malikova, et al., Nauch. Vizual. 4 (4), 56 (2012).

    Google Scholar 

  22. O. V. Grishin asnd V. G. Grishin, Patent RU 147905 U1 (2014).

  23. O. V. Grishin, V. G. Grishin, and D. Yu. Uryumtsev, Hum. Physiol. 38 (4), 389 (2012).

    Article  Google Scholar 

  24. V. M. Bakhilin, Vestn. Ross. Voen.-Med. Akad., No. 1, 193 (2012).

  25. N. Usuda, K. Shirakawa, et al., Physiol. Int. 106 (3), 261 (2019). https://doi.org/10.1556/2060.106.2019.25

    Article  Google Scholar 

  26. S. T. Chan, K. C. Evans, T. Y. Song, et al., PLoS One 15 (9), e0238946 (2020). https://doi.org/10.1371/journal.pone.0238946

  27. T. Dick, Y.-H. Hsieh, R. R. Dhingra, et al., Prog. Brain Res. 209, 191 (2014).

    Article  Google Scholar 

  28. L. Friedman, T. E. Dick, et al., J. Appl. Physiol. 112 (8), 1248 (2012). https://doi.org/10.1152/japplphysiol.01424.2010

    Article  Google Scholar 

  29. A. N. Fleishman, T. V. Korablina, S. A. Petrovskii, and I. D. Martynov, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam. 22 (1), 55 (2014). https://doi.org/10.18500/0869-6632-2014-22-1-55-70

    Article  Google Scholar 

  30. C. M. Kummitha, S. C. Kalhan, G. M. Saidel, and N. Lai, Physiol. Rep. 2 (9), e12159 (2014). https://doi.org/10.14814/phy2.12159

    Article  Google Scholar 

  31. G. Gutierrez, A. Das, G. Ballarino, et al., Intensive Care Med. 39 (8), 1359 (2013). https://doi.org/10.1007/s00134-013-2937-5

    Article  Google Scholar 

  32. D. Garrido, J. Assioun, et al., Cureus 10 (1), e2100 (2018). https://doi.org/10.7759/cureus.2100

    Article  Google Scholar 

Download references

Funding

This work was supported via a basic fundamental research project of the Russian Academy of Sciences (project IV 35.2.6: AAAA-A21-121011990040-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Grishin.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. The study involved no risk for human health and was conducted in accordance with the ethical standards of the Helsinki Declaration, 2013 update of the 64th General Assembly of the World Medical Association (Fortaleza, Brazil). Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by D. Timchenko

Abbreviations: VLF, very low frequency; OTS, oxygen transport system; BbB method, breath-by-breath evaluation of respiratory function parameters; HRV, heart rate variability; ECG, electrocardiogram; CV, coefficient of variation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, V.G., Grishin, O.V., Nikultsev, V.S. et al. Frequency Analysis of Oscillations of External Respiration Parameters and Heart Rate in the VLF Range. BIOPHYSICS 67, 116–124 (2022). https://doi.org/10.1134/S0006350922010067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350922010067

Navigation