Skip to main content
Log in

Inertial capture in flow through porous media

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate through numerical calculation of non-Brownian particles transported by a fluid in a porous medium, the influence of geometry and inertial effects on the capture efficiency of the solid matrix. In the case of a periodic array of cylinders and under the action of gravity, our results reveal that δSt, where δ is the particle capture efficiency, and St is the Stokes number. In the absence of gravity, we observe a typical second order transition between non-trapping and trapping of particles that can be expressed as δ ∼ (StSt c )α, with an exponent α ≈ 0.5, where St c is the critical Stokes number. We also perform simulations for flow through a random porous structure and confirm that its capture behavior is consistent with the simple periodic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bear, Dynamics of Fluids in Porous Materials (Elsevier, New York, 1972)

    Google Scholar 

  2. F. A. Dullien, Porous Media — Fluid Transport and Pore Structure (Academic, New York, 1979)

    Google Scholar 

  3. M. Sahimi, Flow and Transport in Porous Media and Fractured Rock (VCH, Boston, 1995)

    MATH  Google Scholar 

  4. D.L. Koch, R.J. Hill, Annu. Rev. Fluid Mech. 33, 619 (2001)

    Article  ADS  Google Scholar 

  5. C. Tien, Granular Filtration of Aerosols and Hydrosols (Butterworths, Boston, 1989)

    Google Scholar 

  6. C. Ghidaglia, L. de Arcangelis, J. Hinch, E. Guazzelli, Phys. Rev. E 53, R3028 (1996); C. Ghidaglia, L. de Arcangelis, J. Hinch, E. Guazzelli, Phys. Fluids 8, 6 (1996)

    Article  ADS  Google Scholar 

  7. J. Lee, J. Koplik, Phys. Fluids 13, 1076 (2001)

    Article  ADS  Google Scholar 

  8. H. Marshall, M. Sahraoui, M. Kaviany, Phys. Fluids 6, 507 (1993)

    Article  ADS  Google Scholar 

  9. L.M. Levin, Izdatel’stvo Academii Nauk SSSR (1961), Eng. Transl. Foreing Techn. Div. Doc. No. FTD-HT-23-1593-67; N.A. Fuchs, The Mechanics of Aerosols (Pergamon, New York, 1964); D.B. Ingham, L.T. Hildyard, M.L. Hildyard, J. Aerosol Sci. 21, 935 (1990)

  10. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2001)

    Google Scholar 

  11. A.D. Araujo, J.S. Andrade Jr, H.J. Herrmann, Phys. Rev. Lett. 97, 138001 (2006)

    Article  ADS  Google Scholar 

  12. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, Washington DC, 1980); the FLUENT (trademark of FLUENT Inc.) fluid dynamics analysis package has been used in this study

    MATH  Google Scholar 

  13. J.S. Andrade Jr, D.A. Street, T. Shinohara, Y. Shibusa, Y. Arai, Phys. Rev. E 51, 5725 (1995); H.E. Stanley, J.S. Andrade Jr, S. Havlin, H.A. Makse, B. Suki, Physica A 266, 5 (1999); J.S. Andrade Jr, U.M.S. Costa, M.P. Almeida, H.A. Makse, H.E. Stanley, Phys. Rev. Lett. 82, 5249 (1999)

    Article  ADS  Google Scholar 

  14. J.K. Comer, C. Kleinstreuer, C.S. Kim, J. Fluid Mech. 435, 55 (2001)

    MATH  ADS  Google Scholar 

  15. S.A. Morsi, A.J. Alexander, J. Fluid Mech. 55, 193 (1972)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Andrade Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, J.S., Araújo, A.D., Vasconcelos, T.F. et al. Inertial capture in flow through porous media. Eur. Phys. J. B 64, 433–436 (2008). https://doi.org/10.1140/epjb/e2008-00079-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00079-y

PACS

Navigation