Skip to main content
Log in

Constraint optimisation and landscapes

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We describe an effective landscape introduced in [1] for the analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring. This geometric construction reexpresses such problems in the more familiar terms of optimisation in rugged energy landscapes. In particular, it allows one to understand the puzzling fact that unsophisticated programs are successful well beyond what was considered to be the `hard’ transition, and suggests an algorithm defining a new, higher, easy-hard frontier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Krzakala, J. Kurchan, Phys. Rev. E 76, 021122 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Parisi, Lectures of the Varenna summer school, e-print arXiv:cs/0312011

  3. M. Garey, D.S. Johnson, Computers and Intractability: a Guide to the theory and NP-completeness (Freeman, San Francisco, 1979); C.H. Papadimitriou, Computational Complexity (Addison-Wesley, 1994)

    MATH  Google Scholar 

  4. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  5. See also M. Wyart, Ann. Phys. 30, 3 (2005)

    Article  Google Scholar 

  6. An infinitely fast version of: B.D. Lubachevsky, F.H. Stillinger, J. Stat. Phys. 60, 561 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. See, for a recent discussion: F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborová, e-print cond-mat/0612365; F. Ricci-Tersenghi, G. Semerjian, L. Zdeborová, Proc. Natl. Acad. Sci. 104, 10318 (2007)

  8. For the 3-SAT problem transition points see A. Montanari, G. Parisi, F. Ricci-Tersenghi, J. Phys. A 37, 2073 (2004), and references [7,9]. The value of αWS is a variant of Walk SAT, see: J. Ardelius, E. Aurell, Phys. Rev. E 74, 037702 (2006). For a Survey Propagation implementation for the SAT problem see reference [9] and J. Chavas, C. Furtlehner, M. Mezard, R. Zecchina, J. Stat. Mech. (2005) P11016; for the 3-coloring transition points see: L. Zdeborová, F. Krzakala, Phase transitions in the coloring of random graphs, e-print arXiv:0704.1269v1 (2007). The value of α* is the one obtained by the algorithm described here (see Ref. [1]). The value for a survey propagation program is taken from [10]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. M. Mézard, R. Zecchina, Phys. Rev. E 66, 056126 (2002); M. Mézard, G. Parisi, R. Zecchina, Science 297, 812 (2002)

    Article  ADS  Google Scholar 

  10. R. Mulet, A. Pagnani, M. Weigt, et al., Phys. Rev. Lett. 89, 268701 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. The clustering point is the Mode-Coupling transition point of glass theory, recently extended to dilute systems in: A Montanari, G. Semerjian, J. Stat. Phys. 125, 23 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. Braunstein, R. Zecchina, Phys. Rev. Lett. 96, 030201 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kurchan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krzakala, F., Kurchan, J. Constraint optimisation and landscapes. Eur. Phys. J. B 64, 563–565 (2008). https://doi.org/10.1140/epjb/e2008-00052-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00052-x

PACS

Navigation