Skip to main content
Log in

Microwave control of directed transport in asymmetric antidot structures

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

It is shown that a polarized microwave radiation creates directed transport in an asymmetric antidot superlattice in two dimensional electron gas. A numerical method is developed that allows to establish the dependence of this ratchet effect on several parameters relevant for real experimental studies. It is applied to the concrete case of a semidisk Galton board where the electron dynamics is chaotic in the absence of microwave driving. The obtained results show that strong currents can be reached at a relatively low microwave power. This effect opens new possibilities for microwave control of transport in asymmetric superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E.M. Baskin, L.I. Magarill, M.V. Entin, Sov. Phys.-Solid State 20, 1403 (1978) [Fiz. Tver. Tela 20, 2432 (1978)]

    Google Scholar 

  • V.I. Belinicher, B.I. Sturman, Sov. Phys. Usp. 23, 199 (1980) [Usp. Fiz. Nauk 130, 415 (1980)]

    Article  Google Scholar 

  • R.D. Astumian, P. Hänggi, Physics Today 55 (11), 33 (2002)

    Google Scholar 

  • P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • J.B. Majer, J. Peguiron, M. Grifoni, M. Tusveld, J.E. Mooij, Phys. Rev. Lett. 90, 056802 (2003)

    Article  ADS  Google Scholar 

  • J.E. Villegas, S. Savel'ev, F. Nori, E.M. Gonzalez, J.V. Anguita, R. Garcia, J.L. Vicent, Science 302, 1188 (2003)

    Article  ADS  Google Scholar 

  • A.V. Ustinov, C. Coqui, A. Kemp, Y. Zolotaryuk, M. Salerno, Phys. Rev. Lett. 93, 087001 (2004)

    Article  ADS  Google Scholar 

  • C. Mennerat-Robilliard, D. Lucas, S. Guibal, J. Tabosa, C. Jurczak, J.-Y. Courtois, G. Grynberg, Phys. Rev. Lett. 82, 851 (1999)

    Article  ADS  Google Scholar 

  • S. Matthias, F. Müller, Nature 424, 53 (2003)

    Article  ADS  Google Scholar 

  • V. Studer, A. Pepin, Y. Chen., A. Ajdari, Analyst 129, 944 (2004)

    Article  Google Scholar 

  • D. Weiss, M.L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, G. Weimann, Phys. Rev. Lett. 66, 2790 (1991)

    Article  ADS  Google Scholar 

  • G.M. Gusev, Z.D. Kvon, V.M. Kudryashov, L.V. Litvin, Y.V. Nastaushev, V.T. Dolgopolov, A.A. Shashkin, JETP Lett. 54, 364 (1991) [Pis'ma Zh. Eksp. Teor. Fiz. 54, 369 (1991)]

    ADS  Google Scholar 

  • F. Galton, Natural inherritance (Macmillan, London, 1889)

  • I.P. Kornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic theory (Springer, Berlin, 1982)

  • R. Fleischmann, T. Geisel, R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992); Europhys. Lett. 25, 219 (1994)

    Article  ADS  Google Scholar 

  • A.A. Bykov, G.M. Gusev, Z.D. Kvon, V.M. Kudryashev, V.G. Plyukhin, Pis'ma Zh. Eksp. Teor. Fiz. 53, 407 (1991) [JETP Lett. 53, 427 (1991)]

    ADS  Google Scholar 

  • H. Linke, T.E. Humphrey, A. Löfgren, A.O. Sushkov, R. Newbury, R.P. Taylor, P. Omling, Science 286, 2314 (1999)

    Article  Google Scholar 

  • In reference linke the frequency of AC driving is 191 Hz; this is much smaller than all relaxation rates and smaller than the energy spacing between adjacent quantum levels inside one cell Δ/ ħ∼1 GHz; therefore the regime discussed in this paper doesn't work for so low frequencies as discussed in cristadoro

  • A.D. Chepelianskii, D.L. Shepelyansky, Phys. Rev. B 71, 052508 (2005)

    Article  ADS  Google Scholar 

  • G. Cristadoro, D.L. Shepelyansky, Phys. Rev. E 71, 036111 (2005)

    Article  ADS  Google Scholar 

  • J. Rammer, Quantum Transport Theory (Perseus books, Reading Massachusetts, 1998)

  • W.G. Hoover, Time Reversibility, Computer Simulation and Chaos (World Scientific, Singapore, 1999)

  • Private communication of authors of reference cristadoro (2005)

  • C. Jacoboni, P. Lugli, The Monte Carlo method for semiconductor device simulation (Springer, Wien, 1989)

  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  • N.W. Ashcroft, N.D. Mermin, Solid state physics (Holt, Rinehart and Winston New York, 1976)

  • A.A. Abrikosov, Fundamentals of the theory of metals (Elsevier Science, Amsterdam, 1988)

  • E. Akkermans, G. Montambeaux, Physique mésoscopique des électrons et des photons (EDP Sciences, Les Ulis, 2004)

  • E. Abrahams, S.V. Kravchenko, M.P. Sarachik, Rev. Mod. Phys. 73, 251 (2001)

    Article  ADS  Google Scholar 

  • B.I. Sturman, Uspkhi Fiz. Nauk 144, 497 (1984)

    Google Scholar 

  • G.F. Bertsch, S. Das. Gupta, Phys. Rep. 160, 189 (1988)

    Article  ADS  Google Scholar 

  • F. Calvayrac, P.-G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)

    Article  ADS  Google Scholar 

  • M.V. Entin, L.I. Magarill, private communication July 2005; e-print arXiv:cond-mat/0512437

  • F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Chepelianskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chepelianskii, A. Microwave control of directed transport in asymmetric antidot structures. Eur. Phys. J. B 52, 389–396 (2006). https://doi.org/10.1140/epjb/e2006-00295-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00295-5

PACS.

Navigation