Skip to main content
Log in

Abstract

The possibility of controlling stray magnetic fields around conductive layered ferromagnet-containing systems is analyzed. It is shown that different magnetic-field patterns can be implemented depending on the layer parameters and current. Calculation is based on a simplified model where a real stray field is approximated by a system of effective point magnetic charges at the sample surface. In the case of in-plane magnetization, the induced stray field partially screens the external one. This screening is less effective when the applied magnetic field is replaced with electric current. In the case of out-of-plane magnetization, the stray field is concentrated near the domain walls and the sample edges where it can be extremely strong. A mechanism for controlling the different components of a stray field via domain-wall rotation by a current-induced magnetic field is proposed. Numerical estimation shows that the expected ratio of the stray field to current is close to experimental values obtained in numerous transport measurements and usually ascribed to proximity effects (exchange interaction between carriers in adjacent layers). The proposed alternative origin of the effective field should be taken into account when analyzing spin Hall effect and similar spintronics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. D. Stiles and A. Zangwill, Phys. Rev. B 66, 014407 (2002).

    Article  Google Scholar 

  2. I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Nature 476, 189 (2011).

    Article  CAS  Google Scholar 

  3. P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, and M. D. Stiles, Phys. Rev. B 88, 214417 (2013).

    Article  Google Scholar 

  4. E. Martinez, S. Emori, and G. S. D. Beach, Appl. Phys. Lett. 103, 072406 (2013).

    Article  Google Scholar 

  5. J. Ryu, S. Lee, K.-J. Lee, and B.-G. Park, Adv. Mater. 32, 1907148 (2020).

    Article  CAS  Google Scholar 

  6. I. A. Ado, O. A. Tretiakov, and M. Titov, Phys. Rev. B 95, 094401 (2017).

    Article  Google Scholar 

  7. H. J. Williams and W. Shockley, Phys. Rev. 75, 178 (1949).

    Article  Google Scholar 

  8. R. Aleonard, P. Brissonneau, and L. Neel, J. Appl. Phys. 34, 1321 (1963).

    Article  Google Scholar 

  9. E. Lopez, C. Aroca, and P. Sanchez, J. Magn. Magn. Mater. 36, 175 (1983).

    Article  CAS  Google Scholar 

  10. E. Salhi and L. Berger, J. Appl. Phys. 76, 4787 (1994).

    Article  CAS  Google Scholar 

  11. N. Smith, W. Doyle, D. Markham, and D. La Tourette, IEEE Trans. Magn. 23, 3248 (1987).

    Article  Google Scholar 

  12. L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, R. A. Buhrman, Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  13. H.-R. Lee, K. Lee, J. Cho, Y.-H. Choi, C.-Y. You, M.-H. Jung, F. Bonell, Y. Shiota, S. Miwa, and Y. Suzuki, Sci. Rep. 4, 6548 (2014).

    Article  CAS  Google Scholar 

  14. O. A. Tikhomirov, O. V. Skryabina, and L. S. Uspenskaya, J. Magn. Magn. Mater. 535, 168971 (2021).

    Article  Google Scholar 

  15. R. Berthe, A. Birkner, and U. Hartmann, Phys. Status Solidi A 103, 557 (1987).

    Article  CAS  Google Scholar 

  16. J. C. Slonczewski, J. Appl. Phys. 44, 1759 (1973).

    Article  CAS  Google Scholar 

  17. F. B. Hagedorn, J. Appl. Phys. 45, 3129 (1974).

    Article  Google Scholar 

  18. S.-C. Yoo, K.-W. Moon, and S.-B. Choe, J. Magn. Magn. Mater. 343, 234 (2013).

    Article  CAS  Google Scholar 

  19. T. H. O’Dell, Phys. Status Solidi A 48, 59 (1978).

    Article  Google Scholar 

  20. S. Emori, D. C. Bono, and G. S. D. Beach, Appl. Phys. Lett. 101, 042405 (2012).

    Article  Google Scholar 

  21. M. Kawaguchi, K. Shimamura, S. Fukami, F. Matsukura, H. Ohno, T. Moriyama, D. Chiba, and T. Ono, Appl. Phys. Express 6, 113002 (2013).

    Article  Google Scholar 

  22. S. Woo, M. Mann, A. J. Tan, L. Caretta, and G. S. D. Beach, Appl. Phys. Lett. 105, 212404 (2014).

    Article  Google Scholar 

  23. J. Li, G. Yu, Y. Liu, Z. Shi, Y. Liu, A. Navabi, M. Aldosary, Q. Shao, K. L. Wang, R. Lake, and J. Shi, Phys. Rev. B 95, 241305 (2017).

    Article  Google Scholar 

  24. S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, and G. S. D. Beach, Nat. Mater. 12, 611 (2013).

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task for the Institute of Solid State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Tikhomirov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirov, O.A. On the Control of Magnetostatic Stray Fields Using Electric Current. J. Surf. Investig. 17, 556–561 (2023). https://doi.org/10.1134/S1027451023030163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023030163

Keywords:

Navigation