Skip to main content
Log in

Tails of the dynamical structure factor of 1D spinless fermions beyond the Tomonaga approximation

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We consider one-dimensional (1D) interacting spinless fermions with a non-linear spectrum in a clean quantum wire (non-linear bosonization). We compute diagrammatically the 1D dynamical structure factor, S(ω,q), beyond the Tomonaga approximation focusing on it's tails, |ω| ≫vq, i.e. the 2-pair excitation continuum due to forward scattering. Our methodology reveals three classes of diagrams: two “chiral” classes which bring divergent contributions in the limits ω→±vq, i.e. near the single-pair excitation continuum, and a “mixed” class (so-called Aslamasov-Larkin or Altshuler-Shklovskii type diagrams) which is crucial for the f-sum rule to be satisfied. We relate our approach to the T=0 ones present in the literature. We also consider the \(T\not=0\) case and show that the 2-pair excitation continuum dominates the single-pair one in the range: |q|T/kF ≪ω±vq ≪T (substantial for q ≪kF). As applications we first derive the small-momentum optical conductivity due to forward scattering: σ∼1/ω for T ≪ω and σ∼T/ω2 for T ≫ω. Next, within the 2-pair excitation continuum, we show that the attenuation rate of a coherent mode of dispersion Ωq crosses over from \(\gamma_q \propto \Omega_q~(q/k_F)^2\), e.g. γq ∼|q|3 for an acoustic mode, to \(\gamma_q \propto T~(q/k_F)^2\), independent of Ωq, as temperature increases. Finally, we show that the 2-pair excitation continuum yields subleading curvature corrections to the electron-electron scattering rate: \(\tau^{-1} \propto V^2 T + V^4~T^3/\epsilon_F^2\), where V is the dimensionless strength of the interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Bloch, ZS. Phys. 81, 363 (1933); F. Bloch, Helv. Phys. Acta 7, 385 (1934)

    Article  MATH  ADS  Google Scholar 

  • S.-I. Tomonaga, Prog. Theor. Phys. 5, 544 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  • There is an additional assumption on the interaction processes: forward scattering, g2 and g4 processes

  • J.M. Luttinger, J. Math. Phys. 4 1154 (1963)

    Google Scholar 

  • I.E. Dzyaloshinskii, A.I. Larkin, Sov. Phys.-JETP 38, 202 (1974)

    ADS  Google Scholar 

  • A. Luther, V.J. Peschel Phys. Rev. B 9, 2911 (1974); S. Coleman, Phys. Rev. D 11, 2088 (1975)

    Article  ADS  Google Scholar 

  • T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, USA, 2004)

  • A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, 2004)

  • S. Brazovskii, S. Matveenko, P. Nozières, J. Phys. I France 4, 571 (1994); S. Brazovskii, S. Matveenko Sov. Phys. JETP 78, 892 (1994)

    Article  Google Scholar 

  • P. Kopietz, G. Castilla, Phys. Rev. Lett. 76, 4777 (1996)

    Article  ADS  Google Scholar 

  • K.V. Samokhin, J. Phys.: Cond. Matter 10, L533 (1998)

  • M. Pustilnik, E.G. Mishchenko, L.I. Glazman, A.V. Andreev, Phys. Rev. Lett. 91, 126805 (2003)

    Article  ADS  Google Scholar 

  • A.G. Abanov, P.B. Wiegmann, Phys. Rev. Lett. 95, 076402 (2005)

    Article  ADS  Google Scholar 

  • A.V. Rozhkov, Eur. Phys. J. B 47, 193 (2005)

    Article  ADS  Google Scholar 

  • P. Pirooznia, P. Kopietz, e-print arXiv:cond-mat/0512494

  • M. Pustilnik, M. Khodas, A. Kamenev, L.I. Glazman, e-print arXiv:cond-mat/0603458

  • R.G. Pereira, J. Sirker, J.-S. Caux, R. Hagemans, J.M. Maillet, S.R. White, I. Affleck, e-print arXiv:cond-mat/0603681

  • A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Dover Publics; Rev. English Edition, 1977)

  • D. Pines, P. Nozières, The Theory of Quantum Liquids (Perseus Books Publishing, 1989), Vol. 1

  • S. Brazovskii, I. Dzyaloshinskii, Sov. Phys. JETP 44, 1233 (1976)

    Google Scholar 

  • Including the g4-process increases the number of diagrams and renders the diagrammatic approach more tedious. This process generates tails with the same functional form as the ones derived in this article. Only the numerical coefficient in equations (7) would change. This is why we restrict ourselves to the minimal model with the g2-process where less diagrams have to be computed.

  • D.F. DuBois, M.G. Kivelson, Phys. Rev. 186, 409 (1969)

    Article  ADS  Google Scholar 

  • E.G. Mishchenko, M. Yu. Reizer, L.I. Glazman, Phys. Rev. B 69, 195302 (2004); M.Yu. Reizer, V.M. Vinokur, Phys. Rev. B 62, R16 306 (2000)

    Article  ADS  Google Scholar 

  • A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, T. Giamarchi, Proceedings of the ISCOM 2003 conference, Port-Bourgenay, Sept. 2003, e-print arXiv:cond-mat/0401268

  • Notice that the velocity v includes here the re-normalization by interactions, i.e. \(v \equiv v~\sqrt{1 + V(q) / \pi v}\).

  • D. Maslov, in Les Houches Summer School LXXXI, edited by H. Bouchiat et al. (Elsevier Science, 2005),

  • Recall that in a Fermi liquid: \(-\Im \Sigma \propto \epsilon^2 / \epsilon_F \ll \epsilon\)

  • T. Pichler, M. Knupfer, M.S. Golden, J. Fink, A. Rinzler, R.E. Smalley, Phys. Rev. Lett. 80, 4729 (1998); F. Perez, B. Jusserand, B. Etienne, Phys. Rev. B 60, 13310 (1999)

    Article  ADS  Google Scholar 

  • This follows from the fact that we could show, with the help of the Keldysh technique, that the fourth order self-energy diagrams of Figure 4 give rise to a 6-fermion-occupation-function structure to the quantum kinetic equation, on-shell. Recently, relaxation phenomena in disordered wires were shown to require 3 bodies (2 electrons and 1 impurity), see GMP

  • I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 95, 046404 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Teber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teber, S. Tails of the dynamical structure factor of 1D spinless fermions beyond the Tomonaga approximation. Eur. Phys. J. B 52, 233–244 (2006). https://doi.org/10.1140/epjb/e2006-00286-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00286-6

PACS.

Navigation