Skip to main content
Log in

Dynamics and kinetic roughening of interfaces in two-dimensional forced wetting

  • Surfaces and Interfaces
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We consider the dynamics and kinetic roughening of wetting fronts in the case of forced wetting driven by a constant mass flux into a 2D disordered medium. We employ a coarse-grained phase field model with local conservation of density, which has been developed earlier for spontaneous imbibition driven by capillary forces. The forced flow creates interfaces that propagate at a constant average velocity. We first derive a linearized equation of motion for the interface fluctuations using projection methods. From this we extract a time-independent crossover length ξ×, which separates two regimes of dissipative behavior and governs the kinetic roughening of the interfaces by giving an upper cutoff for the extent of the fluctuations. By numerically integrating the phase field model, we find that the interfaces are superrough with a roughness exponent of χ= 1.35 ±0.05, a growth exponent of β= 0.50 ± 0.02, and ξ×∼v-1/2 as a function of the velocity. These results are in good agreement with recent experiments on Hele-Shaw cells. We also make a direct numerical comparison between the solutions of the full phase field model and the corresponding linearized interface equation. Good agreement is found in spatial correlations, while the temporal correlations in the two models are somewhat different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

  • D. Moldovan, L. Golubovic, Phys. Rev. E 61, 6190 (2000)

    Article  Google Scholar 

  • M. Myllys, J. Maunuksela, M. Alava, T. Ala-Nissila, J. Timonen, Phys. Rev. Lett. 84, 1946 (2000); M. Myllys, J. Maunuksela, M. Alava, T. Ala-Nissila, J. Merikoski, J. Timonen, Phys. Rev. E 64, 036101 (2001)

    Article  PubMed  Google Scholar 

  • J. Asikainen, S. Majaniemi, M. Dubé, T. Ala-Nissila, Phys. Rev. E 65, 052104 (2002)

    Article  Google Scholar 

  • J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  Google Scholar 

  • A.E. Sheidegger, The Physics of Flow through Porous Media (MacMillan Co, New-York, 1957)

  • For a recent overview see: J. Krug, Adv. Phys. 46, 139 (1997)

    Google Scholar 

  • S. Moulinet, A. Rosso, W. Krauth, E. Rolley, Phys. Rev. E 69, 035103 (2004)

    Article  Google Scholar 

  • J.F. Joanny, M.O. Robbins, J. Chem. Phys. 92, 3206 (1990)

    Article  Google Scholar 

  • D. Ertas, M. Kardar, Phys. Rev. E 49, R2532 (1994)

  • M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 56, 889 (1986)

    Article  PubMed  Google Scholar 

  • M. Dubé, M. Rost, K.R. Elder, M. Alava, S. Majaniemi, T. Ala-Nissila, Phys. Rev. Lett. 83, 1628 (1999); M. Dubé, M. Rost, K.R. Elder, M. Alava, S. Majaniemi, T. Ala-Nissila, Eur. Phys. J. B 15, 701 (2000)

    Article  Google Scholar 

  • J. Soriano, J. Ortín, A. Hernández-Machado, Phys. Rev. E 66, 031603 (2002)

    Article  Google Scholar 

  • J. Soriano, J. Ortin, A. Hernandez-Machado, Phys. Rev. E 67, 056308 (2003)

    Article  Google Scholar 

  • A. Hernández-machado, J. Soriano, A.M. Lacasta, M.A. Rodríguez, L. Ramírez-Piscina, J. Ortín, Europhys. Lett. 55, 194 (2001)

    Article  Google Scholar 

  • D. Geromichalos, F. Mugele, S. Herminghaus, Phys. Rev. Lett. 89, 104503 (2002)

    Article  PubMed  Google Scholar 

  • S.V. Buldyrev, A.-L. Barabasi, F. Caserta, S. Havlin, H.E. Stanley, T. Vicsek, Phys. Rev. A 45, R8313 (1992)

  • V. Horvath, H.E. Stanley, Phys. Rev. E 52, 5166 (1995)

    Article  Google Scholar 

  • L.A.N. Amaral, A.-L. Barabáasi, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. Lett. 72, 641 (1994)

    Article  PubMed  Google Scholar 

  • T.H. Kwon, A.E. Hopkins, S.E. O’Donnell, Phys. Rev. E 54, 685 (1996)

    Article  Google Scholar 

  • E. Paune, J. Casademunt, Phys. Rev. Lett. 90, 144504 (2003)

    Article  PubMed  Google Scholar 

  • V. Ganasan, H. Brenner, Phys. Rev. Lett. 81, 578 (1998)

    Article  Google Scholar 

  • M. Dubé, S. Majaniemi, M. Rost, M. Alava, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 64, 051605 (2001)

    Article  Google Scholar 

  • M. Dubé, M. Rost, M. Alava, Eur. Phys. J. B 15 691, (2000)

  • T. Ala-Nissila, S. Majaniemi, K.R. Elder, Lecture Notes Physics. 640, 357 (2004)

    Google Scholar 

  • K. Kawasaki, T. Ohta, Prog. Theo. Phys. 68, 129 (1982)

    Google Scholar 

  • K.R. Elder, M. Grant, N. Provatas, J.M. Kosterlitz, Phys. Rev. E 64, 021604 (2001)

    Article  Google Scholar 

  • M. Alava, M. Dubé, M. Rost, Adv. Phys. 53, 83 (2004)

    Article  Google Scholar 

  • M. Dubé, B. Chabot, C. Daneault, M. Alava, accepted for publication in Pulp and Paper Canada (2005)

  • J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)

    Article  Google Scholar 

  • A.J. Bray, Adv. Phys. 43, 357 (1994)

    Google Scholar 

  • J.S. Langer, L.A. Turski, Acta Metall. 25, 1113 (1977)

    Article  Google Scholar 

  • H. Leschhorn, L.H. Tang, Phys. Rev. E 49, 1238 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Laurila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurila, T., Tong, C., Huopaniemi, I. et al. Dynamics and kinetic roughening of interfaces in two-dimensional forced wetting. Eur. Phys. J. B 46, 553–561 (2005). https://doi.org/10.1140/epjb/e2005-00288-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00288-x

Keywords

Navigation