Skip to main content
Log in

A Regularized Model for Wetting/Dewetting Problems: Positivity and Asymptotic Analysis

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider a general regularized variational model for simulating wetting/dewetting phenomena arising from solids or fluids. The regularized model leads to the appearance of a precursor layer which covers the bare substrate, with the precursor height depending on the regularization parameter \(\varepsilon \). This model enjoys lots of advantages in analysis and simulations. With the help of the precursor layer, the spatial domain is naturally extended to a larger fixed one in the regularized model, which leads to both analytical and computational eases. There is no need to explicitly track the contact line motion, and difficulties arising from free boundary problems can be avoided. In addition, topological change events can be automatically captured. Under some mild and physically meaningful conditions, we show the positivity-preserving property of the minimizers of the regularized model. By using formal asymptotic analysis and \(\Gamma \)-limit analysis, we investigate the convergence relations between the regularized model and the classical sharp-interface model. Finally, numerical results are provided to validate our theoretical analysis, as well as the accuracy and efficiency of the regularized model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The code of numerical simulations generated during the current study is available at https://github.com/zhouzygithub/A-regularized-model-for-wetting-dewetting-problems.

References

  • Alikakos, N.D., Bates, P.W., Chen, X.: Convergence of the Cahn-Hilliard equation to the Hele-Shaw model. Arch. Ration. Mech. Anal. 128, 165–205 (1994)

    Article  MathSciNet  Google Scholar 

  • Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems (Courier Corporation, 2000)

  • Andrei, N.: An acceleration of gradient descent algorithm with backtracking for unconstrained optimization. Numer. Algorithms 42, 63–73 (2006)

    Article  MathSciNet  Google Scholar 

  • Andreotti, B., Snoeijer, J.H.: Statics and dynamics of soft wetting. Annu. Rev. Fluid Mech. 52, 285–308 (2020)

    Article  MathSciNet  Google Scholar 

  • Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Gross, S., Maragno, C., Tondello, E.: Recent trends on nanocomposites based on Cu, Ag and Au clusters: a closer look. Coord. Chem. Rev. 250, 1294–1314 (2006)

    Article  CAS  Google Scholar 

  • Bao, W., Jiang, W., Srolovitz, D.J., Wang, Y.: Stable equilibria of anisotropic particles on substrates: a generalized winterbottom construction. SIAM J. Appl. Math. 77, 2093–2118 (2017a)

    Article  MathSciNet  Google Scholar 

  • Bao, W., Jiang, W., Wang, Y., Zhao, Q.: A parametric finite element method for solid-state dewetting problems with anisotropic surface energies. J. Comput. Phys. 330, 380–400 (2017b)

    Article  MathSciNet  CAS  Google Scholar 

  • Bildhauer, M.: Convex variational problems: linear, nearly linear and anisotropic growth conditions (Springer, 2003)

  • Boccardo, F., Rovaris, F., Tripathi, A., Montalenti, F., Pierre-Louis, O.: Stress-induced acceleration and ordering in solid-state Dewetting. Phys. Rev. Lett. 128, 026101 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009)

    Article  CAS  Google Scholar 

  • Bradley, A.T., Box, F., Hewitt, I.J., Vella, D.: Wettability-independent droplet transport by Bendotaxis. Phys. Rev. Lett. 122, 074503 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Bretin, E., Masnou, S., Sengers, A., Terii, G.: Approximation of surface diffusion flow: a second-order variational Cahn-Hilliard model with degenerate mobilities. Math. Models Methods Appl. Sci. 32, 793–829 (2022)

    Article  MathSciNet  CAS  Google Scholar 

  • Cahn, J.W., Elliott, C.M., Novick-Cohen, A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7, 287–301 (1996)

    Article  MathSciNet  Google Scholar 

  • Cahn, J.W., Taylor, J.E.: Surface motion by surface diffusion. Acta Metall. Mater. 42, 1045–1063 (1994)

    Article  CAS  Google Scholar 

  • Chen, X., Hilhorst, D., Logak, E.: Mass conserving Allen-Cahn equation and volume preserving mean curvature flow. Interf. Free Bound. 12, 527–549 (2011)

    Article  MathSciNet  Google Scholar 

  • Chen, X., Wang, X., Xu, X.: Analysis of the Cahn-Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics. Arch. Ration. Mech. Anal. 213, 1–24 (2014)

    Article  MathSciNet  Google Scholar 

  • Chiu, C.-H., Gao, H.: A numerical study of stress controlled surface diffusion during epitaxial film growth. MRS Online Proceed. Library 356, 33–44 (1995)

    Article  CAS  Google Scholar 

  • Dai, S., Du, Q.: Coarsening mechanism for systems governed by the Cahn-Hilliard equation with degenerate diffusion mobility. Multiscale Model. Simul. 12, 1870–1889 (2014)

    Article  MathSciNet  Google Scholar 

  • Danielson, D., Sparacin, D., Michel, J., Kimerling, L.: Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. J. Appl. Phys. 100, 530 (2006)

    Article  Google Scholar 

  • Davoli, E., Piovano, P.: Analytical validation of the Young-Dupré law for epitaxially-strained thin films. Math. Mod. Meth. Appl. Sci. 29, 2183–2223 (2019)

    Article  CAS  Google Scholar 

  • Davoli, E., Piovano, P.: Derivation of a heteroepitaxial thin-film model. Interface. Free Bound. 22, 1–26 (2020)

    Article  MathSciNet  Google Scholar 

  • De Gennes, P.-G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)

    Article  MathSciNet  Google Scholar 

  • De Philippis, G., Maggi, F.: Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law. Arch. Ration. Mech. An. 216, 473–568 (2015)

    Article  MathSciNet  Google Scholar 

  • Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana U. Math. J. 33, 673–709 (1984)

    Article  MathSciNet  Google Scholar 

  • Du, P., Khenner, M., Wong, H.: A tangent-plane marker-particle method for the computation of three-dimensional solid surfaces evolving by surface diffusion on a substrate. J. Comput. Phys. 229, 813–827 (2010)

    Article  MathSciNet  CAS  Google Scholar 

  • Dupré, A., Dupré, P.: Théorie mécanique de la chaleur (Gauthier-Villars, 1869)

  • Dziwnik, M., Munch, A., Wagner, B.: An anisotropic phase-field model for solid-state dewetting and its sharp-interface limit. Nonlinearity 30, 1465–1496 (2017)

    Article  MathSciNet  Google Scholar 

  • Evans, L. C., Garzepy, R. F.: Measure theory and fine properties of functions (Routledge, 2018)

  • Fonseca, I., Fusco, N., Leoni, G., Morini, M.: Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results. Arch. Ration. Mech. Anal. 186, 477–537 (2007)

    Article  MathSciNet  Google Scholar 

  • Fonseca, I., Leoni, G.: On lower semicontinuity and relaxation. Proc. R. Soc. Edinburgh 131, 519–565 (2001)

    Article  MathSciNet  Google Scholar 

  • Fonseca, I., Müller, S.: A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinburgh 119, 125–136 (1991)

    Article  MathSciNet  Google Scholar 

  • Garcke, H., Knopf, P., Nürnberg, R., Zhao, Q.: A diffuse-interface approach for solid-state dewetting with anisotropic surface energies. J. Nonlinear Sci. 33, 34 (2023)

    Article  MathSciNet  Google Scholar 

  • Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. Arts Sci. 3, 104–248 (1878)

    Google Scholar 

  • Giusti, E.: Minimal surfaces and functions of bounded variation, vol. 80 (Springer, 1984)

  • Huang, Q., Jiang, W., Yang, J.Z.: An efficient and unconditionally energy stable scheme for simulating solid-state dewetting of thin films with isotropic surface energy, Commun. Comput. Phys. 26, 1444–1470 (2019)

    Article  MathSciNet  Google Scholar 

  • Huang, W., Jiang, W.: A new regularized sharp-interface model for simulating solid-state dewetting problems, preprint

  • Jiang, W., Bao, W., Thompson, C., Srolovitz, D.: Phase field approach for simulating solid-state dewetting problems. Acta Mater. 60, 5578–5592 (2012)

    Article  CAS  Google Scholar 

  • Jiang, W., Wang, Y., Zhao, Q., Srolovitz, D.J., Bao, W.: Solid-state dewetting and island morphologies in strongly anisotropic materials. Scripta Mater. 115, 123–127 (2016)

    Article  CAS  Google Scholar 

  • Jiang, W., Zhao, Q., Bao, W.: Sharp-interface model for simulating solid-state dewetting in three dimensions. SIAM J. Appl. Math. 80, 1654–1677 (2020)

    Article  MathSciNet  Google Scholar 

  • Kim, G.H., Thompson, C.V.: Effect of surface energy anisotropy on Rayleigh-like solid-state dewetting and nanowire stability. Acta Mater. 84, 190–201 (2015)

    Article  CAS  Google Scholar 

  • Lee, A.A., Münch, A., Süli, E.: Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Appl. Math. 76, 433–456 (2016)

    Article  MathSciNet  Google Scholar 

  • Leroy, F., Cheynis, F., Almadori, Y., Curiotto, S., Trautmann, M., Barbé, J., Müller, P., et al.: How to control solid state dewetting: a short review. Surf. Sci. Rep. 71, 391–409 (2016)

    Article  CAS  Google Scholar 

  • Marchand, A., Das, S., Snoeijer, J.H., Andreotti, B.: Contact angles on a soft solid: from young’s law to Neumann’s law. Phys. Rev. Lett. 109, 236101 (2012)

    Article  PubMed  Google Scholar 

  • Naffouti, M., Backofen, R., Salvalaglio, M., Bottein, T., Lodari, M., Voigt, A., David, T., Benkouider, A., Fraj, I., Favre, L., et al.: Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures, Sci. Adv.3, eaao1472 (2017)

  • Peschka, D., Haefner, S., Marquant, L., Jacobs, K., Münch, A., Wagner, B.: Signatures of slip in dewetting polymer films. PNAS 116, 9275–9284 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piovano, P., Velčić, I.: Microscopical justification of solid-state wetting and dewetting. J. Nonlinear Sci. 32, 1–55 (2022)

    Article  MathSciNet  Google Scholar 

  • Qian, T., Wang, X., Sheng, P.: A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  CAS  Google Scholar 

  • Randolph, S., Fowlkes, J., Melechko, A., Klein, K., Meyer, H., Simpson, M., Rack, P.: Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth. Nanotechnology 18, 465304 (2007)

    Article  Google Scholar 

  • Schmidt, V., Wittemann, J., Senz, S., Gosele, U.: Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Spencer, B.J.: Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski-Krastanow Islands. Phys. Rev. B 59, 2011 (1999)

    Article  CAS  Google Scholar 

  • Style, R.W., Boltyanskiy, R., Che, Y., Wettlaufer, J.S., Wilen, L.A., Dufresne, E.R.: Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103 (2013)

    Article  PubMed  Google Scholar 

  • Taylor, J.: Existence and structure of solutions to a class of nonelliptic variational problems. In Symposia Mathematica, vol. 14, pp. 499–508 (1974)

  • Thompson, C.: Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012)

    Article  CAS  Google Scholar 

  • Tripathi, A.K., Pierre-Louis, O.: Triple-line kinetics for solid films. Phys. Rev. E 97, 022801 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, A.K., Pierre-Louis, O.: Disjoining-pressure-induced acceleration of mass shedding in solid-state dewetting. Phys. Rev. E 101, 042802 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Turco, A., Alouges, F., DeSimone, A.: Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model. ESAIM Math. Model. Numer. Anal. 43, 1027–1044 (2009)

    Article  MathSciNet  Google Scholar 

  • Wang, Y., Jiang, W., Bao, W., Srolovitz, D.J.: Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies. Phys. Rev. B 91, 045303 (2015)

    Article  Google Scholar 

  • Winterbottom, W.: Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303–310 (1967)

    Article  CAS  Google Scholar 

  • Wong, H., Voorhees, P., Miksis, M., Davis, S.: Periodic mass shedding of a retracting solid film step. Acta Mater. 48, 1719–1728 (2000)

    Article  CAS  Google Scholar 

  • Wu, Q., Wong, H.: A slope-dependent disjoining pressure for non-zero contact angles. J. Fluid Mech. 506, 157–185 (2004)

    Article  MathSciNet  Google Scholar 

  • Wulff, G.: Zur frage der geschwindigkeit des wachstums und derauflösung der krystallflächen. Z. Kristallogr. 34, 449–530 (1901)

    Article  CAS  Google Scholar 

  • Xu, X., Wang, X.: Analysis of wetting and contact angle hysteresis on chemically patterned surfaces. SIAM J. Appl. Math. 71, 1753–1779 (2011)

    Article  MathSciNet  Google Scholar 

  • Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. London 95, 65–87 (1805)

    Article  Google Scholar 

  • Zhang, Z., Qian, T.: Variational approach to droplet transport via bendotaxis: thin film dynamics and model reduction. Phys. Rev. Fluids 7, 044002 (2022)

    Article  Google Scholar 

  • Zhang, Z., Yao, J., Ren, W.: Static interface profiles for contact lines on an elastic membrane with the willmore energy. Phys. Rev. E 102, 062803 (2020)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Zhao, Q., Jiang, W., Bao, W.: A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput. 42, B327–B352 (2020)

    Article  MathSciNet  Google Scholar 

  • Zhong, H.: Analysis and simulations of two-phase fluid on patterned surfaces, Ph.D. thesis, (2013)

Download references

Acknowledgements

The authors gratefully acknowledge many helpful discussions with Linlin Su (Southern University of Science and Technology) during the preparation of the paper. The work of Zhen Zhang was partially supported by the NSFC grant (NO. 12071207), and the Shenzhen Sci-Tech Inno-Commission Fund (NO. 20231120102244002). The work of Wei Jiang was supported by the National Natural Science Foundation of China Grant (No. 12271414) and the Open Project Program of Key Laboratory of Mathematics and Complex System (No. K202301), Beijing Normal University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the research presented in this article, as well as to the preparation and revision of the manuscript.

Corresponding author

Correspondence to Zhen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Irene Fonseca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Functions of Bounded Variation

In this appendix, we briefly introduce some definitions and properties of the functions of bounded variation. For more details, we refer the reader to Refs. (Ambrosio et al. 2000; Evans and Garzepy 2018). In this appendix, we always assume \(\Omega \subset {\mathbb {R}}^{n}\).

Definition A.1

(Function of bounded variation) Let \(u \in L^{1}(\Omega )\). u is a function of bounded variation in \(\Omega \) if the distributional derivative of u is represented by a finite Radon measure, i.e.,

$$\begin{aligned} \int _{\Omega } u \frac{\partial \psi }{\partial x_{i}} \textrm{d}x=-\int _{\Omega } \psi \textrm{d}D_{i} u \quad \forall \psi \in C_{0}^{\infty }(\Omega ), \quad i=1, \ldots , n \end{aligned}$$

for some \({\mathbb {R}}^{n}\)-valued Radon measure \(D u=\left( D_{1} u, \ldots , D_{n} u\right) \) in \(\Omega \). The vector space of all functions of bounded variation is denoted by \(BV(\Omega )\).

We can always write \(D u=\sigma |D u|\), where |Du| is a positive Radon measure and \(\sigma =\left( \sigma _{1}, \ldots , \sigma _{n}\right) \) with \(|\sigma (x)|=1\) for |Du|-a.e. \(x \in \Omega \).

Moreover, we say that \( u\in BV_{\textrm{loc}}(\Omega ) \) if \( u \in BV(\Omega _0) \) for every \( \Omega _0\subset \subset \Omega \), i.e., every open \(\Omega _0\) with \( \overline{\Omega _0} \) compact and contained in \(\Omega \).

Definition A.2

(Sets of finite perimeter) Let U be an \({\mathcal {L}}^n\)-measurable subset of \({\textbf{R}}^n\). For any open set \(\Omega \subset {\mathbb {R}}^n\), the perimeter of U in \(\Omega \), denoted by \(P(U,\Omega )\), is the variation of \(\chi _U\) in \(\Omega \), i.e.,

$$\begin{aligned} P(U, \Omega ):=\sup \left\{ \int _E {\text {div}} \varphi \textrm{d}x: \varphi \in \left[ C_0^1(\Omega )\right] ^n,~\Vert \varphi \Vert _{\infty } \leqslant 1\right\} . \end{aligned}$$

We say that U is a set of finite perimeter in \(\Omega \) if \(P(U, \Omega )<\infty \).

Definition A.3

(Approximate jump points) Let \(u \in L_{\textrm{loc}}^{1}(\Omega )\) and \(x \in \Omega \). We say that x is an approximate jump point of u if there exist \(a, b \in {\mathbb {R}}\) and an \((n-1)\)-dimensional unit vector \(\varvec{\nu }\) such that \(a \ne b\) and

$$\begin{aligned} \lim _{R \downarrow 0} \int _{B_{R}^{+}(x,\varvec{\nu } )}R^{-n}|u(y)-a| \textrm{d}y=0, \quad \lim _{R \downarrow 0} \int _{B_{R}^{-}(x, \varvec{\nu })}R^{-n}|u(y)-b| \textrm{d}y=0, \end{aligned}$$

where \( u^+:=a \) and \( u^-:=b \) are called one-side approximate limits and

$$\begin{aligned} \begin{array}{l} B_{R}^{+}(x, \varvec{\nu }):=\left\{ y \in B_{R}(x):\langle y-x, \varvec{\nu }\rangle >0\right\} , \\ B_{R}^{-}(x, \varvec{\nu }):=\left\{ y \in B_{R}(x):\{y-x, \varvec{\nu }\rangle <0\right\} , \end{array} \end{aligned}$$

which means two half balls contained in \( B_{R}(x) \) determined by \( \varvec{\nu } \). The set of approximate jump points is denoted by \(J_u\).

We recall the usual decomposition

$$\begin{aligned} D u=\nabla u {\mathcal {L}}^{n}+\left( u^{+}-u^{-}\right) \otimes \varvec{\nu }_{u} {\mathcal {H}}^{n-1}\mathrm {~\llcorner } J_u+D^{c} u, \end{aligned}$$

where Du is the distribution derivative of u, \(\nabla u\) is the Radon–Nikodym derivative of Du with respect to the Lebesgue measure \({\mathcal {L}}^n\), \( \varvec{\nu }_{u} \) is unit normal vector, \( {\mathcal {H}}^{n-1}\mathrm {~\llcorner } J_u \) means Hausdorff measure restricted to the set \( J_u \), and \(D^{c} u\) is the Cantor part of Du. For the sake of simplicity, we denote \( D^su:= \left( u^{+}-u^{-}\right) \otimes \varvec{\nu }_{u} {\mathcal {H}}^{n-1}\mathrm {~\llcorner } J_u+D^{c} u\), which is called the singular part.

We introduce two important properties by the following two lemmas whose proof can be seen in Ref. Ambrosio et al. (2000).

Lemma A.1

(Property of \(D^{a} u, D^{s} u\)) Let \(u \in B V(\Omega )\), then \(D^{a} u=D u\llcorner (\Omega \backslash S)\) and \(D^{s} u=D u\llcorner S\), where

$$\begin{aligned} S:=\left\{ x \in \Omega : \lim _{R \downarrow 0} R^{-n}|D u|\left( B_{R}(x)\right) =\infty \right\} . \end{aligned}$$

Lemma A.2

(Property of \(D^{c} u\)) Let \(u \in B V(\Omega )\), and let B be a Borel set with its \((n-1)\)-dimensional Hausdorff measure \({\mathcal {H}}^{n-1}(B)<+\infty \). Then \(\left| D^{c} u\right| (B)=0\).

Definition A.4

(Area functional) We define the area functional as follows:

$$\begin{aligned}{} & {} \int _{\Omega } \sqrt{1+|D u|^2}\\{} & {} =\sup \left\{ \int _{\Omega }\left( \varphi _{n+1}+u D_i \varphi _i\right) \textrm{d} x\left| \varphi =\left( \varphi _1, \ldots , \varphi _{n+1}\right) \in C_0^1(\Omega ),\right| \varphi \mid \leqslant 1\right\} . \end{aligned}$$

Proposition A.1

The area functional has a special decomposition (Demengel and Temam 1984):

$$\begin{aligned} \int _{\Omega }\sqrt{1+|Du|^2}=\int _{\Omega }\sqrt{1+|\nabla u|^2}\textrm{d}x+|D^{c} u|(\Omega )+\int _{J_u\cap \Omega }|u^+-u^-| \mathrm {~d} {\mathcal {H}}^{n-1}, \end{aligned}$$
(6.1)

whose geometric meaning is the perimeter of the subgraph \( U:=\{(x,t)\in \Omega \times {\mathbb {R}}:t<h(x)\} \) of h in \(\Omega \) (Giusti 1984). In particular, if h is Lipschitz continuous, it represents the area of the surface \( \{(x,h(x)):x\in \Omega \} \).

Next, we introduce the compactness of the functions of bounded variation (Evans and Garzepy 2018).

Lemma A.3

(Compactness of BV functions) Let \(\Omega \subset {\mathbb {R}}^{n}\) be open and bounded, with \(\partial \Omega \) Lipschitz. Assume \(\left\{ f_{j}\right\} _{j=1}^{\infty }\) is a sequence in \(B V(\Omega )\) satisfying

$$\begin{aligned} \sup _{j}\left\| f_{j}\right\| _{B V(\Omega )}<\infty . \end{aligned}$$

Then there exists a subsequence \(\left\{ f_{j_{k}}\right\} _{k=1}^{\infty }\) and a function \(f \in B V(\Omega )\) such that

$$\begin{aligned} f_{j_{k}} \rightarrow f \text{ in } L^{1}(\Omega ), \end{aligned}$$

as \(k \rightarrow \infty \).

At last, we give a proposition (c.f. Corollary 1.29 of Ambrosio et al. 2000).

Proposition A.2

(polar decomposition) Let \(\mu \) be a \({\mathbb {R}}^m\)-valued measure on the measure space \((X, {\mathcal {E}})\), then there exists a unique \({\mathbb {S}}^{m-1}\)-valued function \(f \in \left[ L^1(X,|\mu |)\right] ^m\) such that \(\mu =f|\mu |\), where \({\mathbb {S}}^{m-1}\) is \((m-1)\)-dimensional unit sphere.

Appendix B: Proof of Lemma 4.2

Firstly, we recall the definition and properties of mollifiers (Giusti 1984)

A function \(\eta (x)\) is called a mollifier if

  1. (i)

    \(\eta (x) \in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \),

  2. (ii)

    \(\eta \) is zero outside a compact subset of \(B_{1}=\left\{ x \in {\mathbb {R}}^{n}:|x|<1\right\} \),

  3. (iii)

    \(\int \eta (x) d x=1\).

If in addition we have

  1. (iv)

    \(\eta (x) \geqslant 0\),

  2. (v)

    \(\eta (x)=\mu (|x|)\) for some function \(\mu : {\mathbb {R}}^{+} \rightarrow {\mathbb {R}}\),

then \(\eta \) is a positive symmetric mollifier. An example of positive symmetric mollifiers is the function

$$\begin{aligned} \eta (x)= {\left\{ \begin{array}{ll}0 &{} |x| \geqslant 1, \\ C \exp \left( \frac{1}{|x|^{2}-1}\right) &{} |x|<1,\end{array}\right. } \end{aligned}$$

where C is a normalizing constant such that \(\int \eta (x) d x=1\).

Given a positive symmetric mollifier \(\eta \) and a function \(f \in L_{\text{ loc } }^{1}\left( {\mathbb {R}}^{n}\right) \), define for each \(\varepsilon >0\)

$$\begin{aligned}{} & {} \eta _{\varepsilon }(x):=\varepsilon ^{-n} \eta \left( \frac{x}{\varepsilon }\right) , \\{} & {} f_{\varepsilon }(x):=(\eta _{\varepsilon } * f)(x)=\varepsilon ^{-n} \int _{{\mathbb {R}}^{n}} \eta \left( \frac{x-z}{\varepsilon }\right) f(z) \textrm{d}z=\int _{{\mathbb {R}}^{n}} \eta (w) f(x+\varepsilon w) \textrm{d}w. \end{aligned}$$

It is straightforward to have the following two properties of mollifiers:

(a) \( f(x) \geqslant 0\ a.e. \) in \(\Omega \) \(\ \Rightarrow f_{\varepsilon }(x) \geqslant 0 \) if \(\varepsilon \) is small enough,

(b) \({\text {Supp}} f \subseteq A \Rightarrow {\text {Supp}} f_{\varepsilon } \subseteq A_{\varepsilon }=\{x: {\text {dist}}(x, A) \leqslant \varepsilon \}\).

Using the technique of mollifiers, Lemma B.1 of Ref. Bildhauer (2003) can be established.

Lemma B.1

Let \(h \in B V\left( \Omega \right) \). Then there is a sequence \(\left\{ h_{j}\right\} \) in \(C^{\infty }\left( \Omega \right) \) satisfying

$$\begin{aligned} \begin{aligned}&\lim _{j \rightarrow \infty } \int _{\Omega }\left| h_{j}-h\right| \textrm{d} x=0 \\&\lim _{j \rightarrow \infty } \int _{\Omega } \sqrt{1+\left| \nabla h_{j}\right| ^{2}} \mathrm {~d} x=\int _{\Omega } \sqrt{1+|D h|^{2}} \end{aligned} \end{aligned}$$

Moreover, the trace of each \(h_{j}\) on \(\partial \Omega \) coincides with the trace of h.

Based on this lemma, the remaining problem is to show \( h_j\geqslant 0 \) and \( \lim _{m\rightarrow \infty }{\mathcal {L}}^n({\text {Supp}}(h_j))\leqslant {\mathcal {L}}^n({\text {Supp}}(h)). \)

From the proof of Lemma B.1 in Ref. Bildhauer (2003), we know the recovery sequence is

$$\begin{aligned} h_{j}=\sum _{i=1}^{\infty } \eta _{\varepsilon _{j,i}} *\left( \varphi _{i} h\right) , \end{aligned}$$

where \(\{\varepsilon _{j,i}\}\) are sufficiently small. \( \{\varphi _{i}\} \) is a partition of unity, i.e., for a covering \( \{U_i\} \) of \( \Omega \),

$$\begin{aligned} \varphi _{i} \in C_{0}^{\infty }\left( U_{i}\right) , \quad 0 \leqslant \varphi _{i} \leqslant 1, \quad \sum _{i=1}^{\infty } \varphi _{i}=1. \end{aligned}$$

Since \(\varphi _i\geqslant 0\) and \( h\geqslant 0 \ a.e.\) in \(\Omega \), from property (a) of the mollifiers, we know \( h_j\geqslant 0 \).

For any \(\delta >0\), we can select a sequence \(\{\varepsilon _{j,i}\}\) such that \( \varepsilon _{j,i}<\delta \). From property (b) of the mollifiers and \( h\geqslant 0 \ a.e.\) in \(\Omega \),

$$\begin{aligned} \lim \limits _{j\rightarrow \infty }{\mathcal {L}}^n({\text {Supp}}(h_j))&= \lim \limits _{j\rightarrow \infty }{\mathcal {L}}^n\bigg ({\text {Supp}}(\sum _{i=1}^{\infty } \eta _{\varepsilon _{j,i}} *\left( \varphi _{i} h\right) )\bigg )\\&= \lim \limits _{j\rightarrow \infty }{\mathcal {L}}^n\bigg (\cup _i{\text {Supp}}( \eta _{\varepsilon _{j,i}} *\left( \varphi _{i} h\right) )\bigg )\\&\leqslant \lim \limits _{j\rightarrow \infty }{\mathcal {L}}^n\big (\cup _i\{x:{\text {dist}}(x,{\text {Supp}}(\varphi _{i}h))<\delta \} \big )\\&\leqslant \lim \limits _{j\rightarrow \infty }{\mathcal {L}}^n\big (\{x:{\text {dist}}(x,{\text {Supp}}(h))<\delta \}\big )\\&={\mathcal {L}}^n\big (\{x:{\text {dist}}(x,{\text {Supp}}(h))<\delta \}\big ), \end{aligned}$$

Let \(\delta \rightarrow 0\),

$$\begin{aligned} \lim _{j\rightarrow \infty }{\mathcal {L}}^n({\text {Supp}}(h_j))\leqslant {\mathcal {L}}^n({\text {Supp}}(h)). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Jiang, W. & Zhang, Z. A Regularized Model for Wetting/Dewetting Problems: Positivity and Asymptotic Analysis. J Nonlinear Sci 34, 45 (2024). https://doi.org/10.1007/s00332-024-10020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10020-y

Keywords

Mathematics Subject Classification

Navigation