Skip to main content
Log in

Curie temperature in the Hubbard model with alloy disorder

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Magnetic and electric properties of the Hubbard model with binary alloy disorder are studied within the dynamical mean-field theory. A paramagnet-ferromagnet phase transition and a Mott-Hubbard metal-insulator transition are observed upon varying the alloy concentration. A disorder induced enhancement of the Curie temperature is demonstrated and explained by the effects of band splitting and subband filling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  Google Scholar 

  • E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)

    Article  Google Scholar 

  • G. Cao et al., cond-mat/0409157

  • S. Yeo et al., Phys. Rev. Lett. 91, 046401 (2003)

    Article  PubMed  Google Scholar 

  • V.I. Anisimov et al., Phys. Rev. Lett. 89, 257203 (2002)

    Article  PubMed  Google Scholar 

  • I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Google Scholar 

  • T. Dietl, Semicond. Sci. Technol. 17, 377 (2002)

    Google Scholar 

  • D. Vollhardt, N. Blümer, K. Held, M. Kollar, in Band-Ferromagnetism, edited by K. Baberschke, M. Donath, W. Nolting, Lecture Notes in Physics, Vol. 580 (Springer, Berlin, 2001), p. 191

  • A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    CAS  Google Scholar 

  • Th. Pruschke, M. Jarrell, J.K. Freericks, Adv. Phys. 44, 187 (1995)

    Google Scholar 

  • D. Vollhardt, Correlated Electron Systems, Vol. 9, edited by V.J. Emery (World-Scientific, Singapore, 1993), p. 57

  • M. Ulmke, Eur. Phys. J. B 1, 301 (1998)

    Google Scholar 

  • J. Wahle, N. Blumer, J. Schlipf, K. Held, D. Vollhardt, Phys. Rev. B 58, 12749 (1998)

    Google Scholar 

  • A.I. Lichtenstein, M.I. Katsnelson, G. Kotliar, Phys. Rev. Lett. 87, 067205 (2001)

    PubMed  Google Scholar 

  • B. Velicky, S. Kirkpatrick, H. Ehrenreich, Phys. Rev. 175, 747 (1968)

    Google Scholar 

  • K. Byczuk, M. Ulmke, D. Vollhardt, Phys. Rev. Lett. 90, 196403 (2003)

    PubMed  Google Scholar 

  • K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. B 69, 045112 (2004)

    Google Scholar 

  • D.I. Bardos, J. App. Phys. 40, 1371 (1969); M. Pratzer, H.J. Elmers, Phys. Rev. Lett. 90, 077201 (2003)

    Google Scholar 

  • I. Turek, J. Kudrnovsky, V. Drchal, P. Weinberger, Phys. Rev. B 49, 3352 (1994)

    Google Scholar 

  • H.S. Jarrett et al., Phys. Rev. Lett. 21, 617 (1968); G.L. Zhao, J. Callaway, M. Hayashibara, Phys. Rev. B 48, 15781 (1993); S.K. Kwon, S.J. Youn, B.I. Min, Phys. Rev. B 62, 357 (2000); T. Shishidou, A.J. Freeman, R. Asahi, Phys. Rev. B 64, 180401(R) (2001); J.F. DiTsua et al., cond-mat/0306541

    Google Scholar 

  • M.B. SilvaNeto, A.H. CastroNeto, D.J. Mixson, J.S. Kim, G.R. Stewart, Phys. Rev. Lett. 91, 257206 (2003)

    PubMed  Google Scholar 

  • W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    PubMed  Google Scholar 

  • R. Vlaming, D. Vollhardt, Phys. Rev. B 45, 4637 (1992); V. Janiš, D. Vollhardt, Phys. Rev. B 46, 15712 (1992)

    Google Scholar 

  • M. Ulmke, V. Janiš, D. Vollhardt, Phys. Rev. B 51, 10411 (1995)

    Google Scholar 

  • P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Google Scholar 

  • For a variant of DMFT where the Anderson localization is included by using geometric averages see: V. Dobrosavljevic et al., Eur. Phys. Lett. 62, 76 (2003); K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005)

    Google Scholar 

  • E. Müller-Hartmann, in V Symposium “Physcs of Metals”, edited by E. Talik, J. Szade (Silesian University-Poland, 1991), p. 22

  • J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)

    PubMed  Google Scholar 

  • K. Byczuk, D. Vollhardt, Phys. Rev. B 65, 134433 (2002)

    Google Scholar 

  • The high and moderate temperature data for the inverse susceptibility, obtained from the Quantum Monte-Carlo simulations, are extrapolated by the linear function to lower temperatures according to the Curie-Weiss law [29]. This allows us to determine even very low Tc values

  • The Brillouin curves follow from solutions of the self-consistent equation M(T)/Ms=tanh[TcM(T)/(TMs)], where Ms are assumed to be saturated magnetizations and Tc are earlier computed Curie temperatures

  • Due to the Monte-Carlo method it is extremely difficult to perform calculations at lower temperatures then those presented in Figure 5.

  • R. Bulla, M. Potthoff, Eur. Phys. J. B 13, 257 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Byczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byczuk, K., Ulmke, M. Curie temperature in the Hubbard model with alloy disorder. Eur. Phys. J. B 45, 449–454 (2005). https://doi.org/10.1140/epjb/e2005-00216-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00216-2

Keywords

Navigation