Skip to main content
Log in

Charge gaps and quasiparticle bands of the ionic Hubbard model

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The ionic Hubbard model on a cubic lattice is investigated using analytical approximations, the DMFT and Wilson’s renormalization group for the charge excitation spectrum. Near the Mott insulating regime, where the Hubbard repulsion starts to dominate all energies, the formation of correlated bands is described. The corresponding partial spectral weights and local densities of states show the characteristic features, of a hybridized-band structure as appropriate for the regime at small U, which at half-filling is known as a band insulator. In particular, a narrow charge gap is obtained at half-filling, and the distribution of spectral quasi-particle weight reflects the fundamental hybridization mechanism of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. Hubbard, J.B. Torrance, Phys. Rev. Lett. 47, 1750 (1981)

    Google Scholar 

  • K. Pozgajcic, C. Gros, Phys. Rev. B 68, 085106 (2003)

    Google Scholar 

  • T. Wilkens, R. Martin, Phys. Rev. B 63, 235108 (2001)

    Google Scholar 

  • S.R. Manmana, V. Meden, R.M. Noack, K. Schönhammer, Phys. Rev. B 70, 155115 (2004)

    Google Scholar 

  • R. Zitzler, Th. Pruschke, R. Bulla, Euro. Phys. J. B 27, 473 (2003)

    Google Scholar 

  • N. Grewe, F. Steglich, Handbook of Physics and Chemstry of Rare Earths, edited by K.A. Gschneidner Jr., L. Eyring (Elsevier, Amsterdam, 1991), Vol. 14, p. 343

  • J. Sticht, N. D’Ambrumenil, J. Kübler, Z. Phys. B 65, 149 (1986)

    Google Scholar 

  • Th. Pruschke, M. Jarrell, J.K. Freericks, Adv. Phys. 42, 187 (1995)

    Google Scholar 

  • A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Google Scholar 

  • U. Brandt, Chr. Mielsch, Z. Phys. B 75, 365 (1989)

    Google Scholar 

  • K. Held, I.A. Nekrasov, N. Blümer, V.I. Anisimov, D. Vollhardt, Int. J. Mod. Phys. B 15, 2611 (2001); M.B. Zölfl, Th. Pruschke, J. Keller, A.I. Poteryaev, I.A. Nekrasov, V.I. Anisimov, Phys. Rev. B 61, 12810 (2000)

    Google Scholar 

  • J.M. Luttinger, Phys. Rev. 119, 1153 (1960)

    Google Scholar 

  • R.M. Martin, J.W. Allen, J. Appl. Phys. 50, 7561 (1979); R.M. Martin, Phys. Rev. Lett. 48, 362 (1982)

    Google Scholar 

  • N. Grewe, Z. Physik B - Cond. Matter 67, 323 (1987)

    Google Scholar 

  • N. Grewe, Solid State Commun. 50, 19 (1984)

    Google Scholar 

  • P. Fulde, J. Keller, G. Zwicknagl, Solid State Phys., edited by H. Ehrenreich, D. Turnbull (Academic Press, San Diego, 1988), Vol. 41, p. 1

  • Y. Kuramoto, Theory fo Heavy Fermions and Valence Fluctuations, edited by T. Kasuya, T. Saso, Springer, Berlin, 152 (1985); Ch. Kim, Y. Kuramoto, T. Kasuya, J. Phys. Soc. Jpn 59, 2414 (1990)

    Google Scholar 

  • W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); W. Metzner, Physica B 165 & 166, 403 (1990); D. Vollhardt, Correlated Electron Systems, edited by V. Emery (World Scientific, Singapore, 1993)

    Google Scholar 

  • Th. Pruschke, R. Bulla, M. Jarrel, Phys. Rev. B 61, 12799 (2000); R. Bulla, T.A. Costi, D. Vollhardt, Phys. Rev. B 64, 045103-1 (2001)

    Google Scholar 

  • Th. Pruschke, N. Grewe, Z. Physik B - Cond. Matter 74, 439 (1989)

    Google Scholar 

  • H. Keiter, J.C. Kimball, Int. J. Magn. 1, 233 (1971); N. Grewe, H. Keiter, Phys. Rev. B 24, 4420 (1981)

    Google Scholar 

  • W. Metzner, Phys. Rev. B 43, 8549 (1991)

    Google Scholar 

  • N. Grewe, Z. Physik B - Cond. Matter 53, 271 (1983)

    Google Scholar 

  • Y. Kuramoto, H. Kojima, Z. Physik B - Cond. Matter 57, 95 (1984); E. Müller-Hartmann, Z. Physik B - Cond. Matter 57, 281 (1984); Y. Kuramoto, E. Müller-Hartmann, J. Magn. Mat. 52, 122 (1985)

    Google Scholar 

  • F.B. Anders, N. Grewe, Europhys. Lett. 26, 551 (1994)

    Google Scholar 

  • J. Kroha, P. Wölfle, T.A. Costi, Phys. Rev. Lett. 79, 261 (1997)

    Google Scholar 

  • K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Google Scholar 

  • H.R. Krishna-Murty, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1044 (1980)

    Google Scholar 

  • R. Bulla, Th. Pruschke, A.C. Hewson, J. Phys.: Condens. Matter 9, 10463 (1997)

    Google Scholar 

  • R. Bulla, A.C. Hewson, T. Pruschke, J. Phys.: Condens. Matter 10, 8365 (1998)

    Google Scholar 

  • M. Jarrell, Th. Pruschke, Z. Physik B - Cond. Matter 90, 187 (1993); Th. Pruschke, R. Zitzler, arXiv: cond-mat/0309192v1 (2003)

    Google Scholar 

  • S. Schmitt, N. Grewe, to be published in Proc. Intern. Conf. on Strongly Correlated Electron Systems 2004, Physica B

  • This term also seems appropriate for the following reason: The Hubbard I-approximation may be reformulated with a perturbation expansion with respect to hopping or hybridization to neighbours. In this frame the Free Theory encorporates all processes not containing local cummulant vertices and realizes as such a very general approximation scheme in which Wicks theorem is formally applicable and propagation through the lattice is free

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jabben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabben, T., Grewe, N. & Anders, F. Charge gaps and quasiparticle bands of the ionic Hubbard model. Eur. Phys. J. B 44, 47–55 (2005). https://doi.org/10.1140/epjb/e2005-00098-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00098-2

Keywords

Navigation