Skip to main content
Log in

A potential model for single crystals of the Li\(_\mathsf{2}\)O-B\(_\mathsf{2}\)O\(_\mathsf{3}\) system based on non-equivalence of boron atoms

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Ab initio calculations allow to distinguish boron atoms in BO3 and BO4 complexes in lithium borates. On this basis an effective potential model for single crystals of Li2O-B2O3 is suggested. Empirical parameters of the interaction potentials are optimized in order to reproduce the experimental data of lithium tetraborate. The optimized parameters are applied to calculations of the structures of the anhydrous borate single crystals Li3BO3, LiBO2, Li2B4O7, Li3B7O12 and LiB3O5. The range of applicability of the potential model is increased by introducing a dependence of the effective oxygen charges on the Li content. In this way good agreement with experimental data is obtained for calculated structural and elastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.S.R. Sastry, F.A. Hummel, J. Am. Ceram. Soc. 41, 7 (1958)

    Google Scholar 

  2. B.S.R. Sastry, F.A. Hummel, J. Am. Ceram. Soc. 42, 216 (1959)

    Google Scholar 

  3. V.I. Aver’yanov, A.E. Kalmykov, Glass Phys. and Chemistry 16, 492 (1990)

    Google Scholar 

  4. J. Huang, Y. Shen, Appl. Phys. Lett. 15, 1579 (1991)

    Article  Google Scholar 

  5. Mao Hongnei, Appl. Phys. Lett. 61, 1148 (1992)

    Article  Google Scholar 

  6. T. Ukachi, R.J. Lane, J. Opt. Soc. Amer. B. 9, 1128 (1992)

    Google Scholar 

  7. F. Hanson, D. Dick, Opt. Lett. 16, 205 (1991)

    Google Scholar 

  8. Y. Wang, Z. Xu, D. Deng et al. , Appl. Phys. Lett. 55, 7 (1989)

    Article  Google Scholar 

  9. B. Wu, F. Xie, C.C.D. Deng, Z. Xu, Opt. Commun. 88, 451454 (1992)

    Article  Google Scholar 

  10. J. Hee-Rak, J. Byung-Moon, Ch. Jung-Won, K. Jung-Nam, Materials Letters. 30, 41 (1997)

    Article  Google Scholar 

  11. K. Otsuka, M. Funami, M. Ito et al. , Jpn J. Appl. Phys. 34, 2646 (1995)

    Article  Google Scholar 

  12. M. Takeuchi, I. Odagawa, M. Tanaka, K. Yamanouchi, Jpn J. Appl. Phys. 36, 3091 (1997)

    Article  Google Scholar 

  13. K.V. Shestopalov, V.A. Nefedov, B.I. Zadneprovsky, In.: Proc. 1994 IEEE Int. Frequency Control Symp., 301 (Boston, USA, 1994)

  14. M. Ono, M. Sakai, Y. Fujiwara, N. Wakatsuki, In.: Proc. 1997 IEEE Ultrasonics Symp. 2, 1047 (Toronto, Canada, 1997)

  15. R. Komatsu, T. Sugawara, K. Sassa et al. , Appl. Phys. Lett. 70, 3492 (1997)

    Article  Google Scholar 

  16. C. Furetta, P.S. Weng, Operation Thermoluminescent dosimetry (World Scientific, London, 1998)

  17. K. Mahesh, P.S. Weng, C. Furetta, Thermoluminescence in solids and its applications (Nuclear Technology Publishing, Ashford, 1989)

  18. E.F. Dolzhenkova, V.N. Baumer, A.V. Tolmachev, B.M. Hunda, P.P. Puga, 6th Intern. Confer. on Inorganic Scintillators and their Applications (Book of Abstracts, Chamonix, France, 2001), p. 210

  19. G. Kanchan, A.J. Patkan, H.B. Lai, J. Mater. Sci. 23, 4257 (1988)

    Google Scholar 

  20. A. Kirfel, G. Will, R.F. Stewart, Acta Crystallogr. B 39, 175 (1983)

    Article  Google Scholar 

  21. A. Takada, C.R.A. Catlow, G.D. Price, J. Phys.: Condens. Matter 7, 8659 (1995); A. Takada, C.R.A. Catlow, G.D. Price, J. Phys.: Condens. Matter 7, 8693 (1995)

    Article  Google Scholar 

  22. R. Fernandez-Perea, F.J. Bermejo, M.L. Senent, Phys. Rev. B 54, 6039 (1996)

    Article  Google Scholar 

  23. H. Inoue, N. Aoki, I. Yasui, J. Am. Ceram. Soc. 70, 622 (1987)

    Google Scholar 

  24. A.H. Verhoef, H.W. den Hartog, J. Non-Crystaline Solids 182, 235 (1995)

    Article  Google Scholar 

  25. C.P.E. Varsamis, A. Vegiri, E.I. Kamitsos, Condens. Matter Phys. 4, 119 (2001)

    Google Scholar 

  26. C.P.E. Varsamis, A. Vegiri, E.I. Kamitsos, Phys. Rev. B 65, 104203 (2002)

    Article  Google Scholar 

  27. A. Vegiria, C.P.E. Varsamis, J. Chem. Phys. 120, 7689 (2004)

    Article  Google Scholar 

  28. Q. Xu, K. Kawamura, T. Yokokawa, J. Non-Crystaline Solids 104, 261 (1988)

    Article  Google Scholar 

  29. J.D. Gale, Philos. Mag. B 73, 3 (1996); J.D. Gale, J. Chem. Soc. Faraday Trans. 93, 629 (1997); J.D. Gale, A.L. Rohl, Molec. Simulation 29, 291 (2003)

    Google Scholar 

  30. G.E. Gurr, P.W. Montgomery, C.D. Knutson, B.T. Gorres, Acta Cryst. B: Struct. Sci. 26, 906 (1970)

    Article  Google Scholar 

  31. C.T. Prewitt, R.D. Shannon, Acta Cryst. B: Struct. Sci. 24, 869 (1968)

    Article  Google Scholar 

  32. F. Stewner, Acta Crystallogr. B 27, 904 (1971)

    Article  Google Scholar 

  33. M. Marezio, J.P. Remeika, J. Chem. Phys. 44, 3348 (1966)

    Google Scholar 

  34. S.F. Radaev, L.A. Muradyan, L.F. Malakhova, Y.A. Burak, V.I. Simonov, Kristallografiya 34, 1400 (1989)

    Google Scholar 

  35. S.F. Radaev, B.A. Maximov, V.I. Simonov, B.V. Andreev, V.A. D’yakov, Acta Crystallogr. B 48, 154 (1992)

    Article  Google Scholar 

  36. J. Aidong, L. Shirong, H. Qingzhen, C. Tianbin, K. Deming, Acta Crystallogr. C 46, 1999 (1990)

    Article  Google Scholar 

  37. P.P. Ewald, Ann. Phys. 64, 253 (1921)

    MATH  Google Scholar 

  38. V.V. Zareckyj, Ya.V. Burac, Phys. of Solid State 31, 80 (1989)

    Google Scholar 

  39. L. Bohaty, S. Haussuhl, J. Liebertz, Cryst. Res. Technol. 24, 1159 (1989)

    Google Scholar 

  40. J.D. Dill, J.A. Pople, J. Chem. Phys. 62, 2921 (1975)

    Article  Google Scholar 

  41. V.R. Saunders, R. Dovesi, C. Roetti et al. , CRYSTAL2003 User’s Manual (University of Torino, Torino, 2003)

  42. C.N. Sokolov, I.N. Silin, Preprint JINR, D-810 (Dubna, 1961)

  43. I.N. Silin, FORTRAN program library (Dubna, JINR, D-520, 1970)

  44. R.S. Mulliken, J. Chem. Phys. 23, 2343 (1982)

    Google Scholar 

  45. W.H. Press, S.A. Teukolsky, W.T Vetterling B.P. Flannery, Numerical Recipes, 2nd edn. (Cambridge University Press, Cambridge, 1992)

  46. A.V. Vdovin, V.N. Moiseenko, V.S. Gorelik, Ya.V. Burak, Phys. Sol. State 43, 1648 (2001)

    Article  Google Scholar 

  47. A. Takada, C.R.A. Catlow et al. , Phys. Rev. B 51, 1447 (1995)

    Article  Google Scholar 

  48. H.A.A. Sidek, G.A. Saunders, B. James, J. Phys. Chem. Solids. 51, 457 (1990)

    Article  Google Scholar 

  49. M. Adachi, T. Shiosaki et al. , IEEE Ultrason. Symp. Proc. (San Francisco, Calif.), 1, 228 (1985)

  50. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  Google Scholar 

  51. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Maslyuk.

Additional information

Received: 14 July 2004, Published online: 21 October 2004

PACS:

61.50.Ah Theory of crystal structure, crystal symmetry; calculations and modeling - 34.20.Cf Interatomic potentials and forces - 12.39.Pn Potential models - 77.84.Bw Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslyuk, V.V., Bredow, T. & Pfnür, H. A potential model for single crystals of the Li\(_\mathsf{2}\)O-B\(_\mathsf{2}\)O\(_\mathsf{3}\) system based on non-equivalence of boron atoms. Eur. Phys. J. B 41, 281–287 (2004). https://doi.org/10.1140/epjb/e2004-00318-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00318-3

Keywords

Navigation