Skip to main content
Log in

Abstract.

We calculate the change in the correlation gap of armchair carbon nanotubes with uniaxial elastic strain. We predict that such a stretching will enlarge the correlation gap for all carbon nanotubes by a change that could be as large as several meV per percent of applied strain, in contrast with pure band structure calculations where no change for armchair carbon nanotubes is predicted. The correlation effects are considered within a self-consistent Hartree-Fock approximation to the Hubbard model with on-site repulsion only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanotubes: Synthesis, structure, properties, and applications, Vol. 80 of Topics in applied physics, edited by M.S. Dresselhaus, G. Dresselhaus (Springer, 2001)

  2. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, 1998)

  3. J.W.G. Wildöer, L.V. Venema, A. Rinzler, R.E. Smalley, C. Deeker, Nature 391, 59 (1998)

    Article  Google Scholar 

  4. T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, Nature 391, 62 (1998)

    Article  CAS  Google Scholar 

  5. T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C.S. Jayanthi, M. Tang, S. Wu, Nature 405, 769 (2000)

    Article  Google Scholar 

  6. J.-P. Salvetat, J.-M. Bonard, N.H. Thomson, A.J. Kulik, L. Forró, W. Benoit, L. Zuppiroli, Appl. Phys. A 69, 255 (1999)

    Article  Google Scholar 

  7. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen, Phys. Rev. Lett. 90, 156401 (2003)

    Article  Google Scholar 

  8. L. Yang, J. Han, Phys. Rev. Lett. 85, 154 (2000)

    Article  Google Scholar 

  9. R. Heyd, A. Charlier, E. McRae, Phys. Rev. B 55, 6820 (1997)

    Article  Google Scholar 

  10. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997)

    Article  Google Scholar 

  11. M.B. Nardelli, J. Bernholc, Phys. Rev. B 60, R16338 (1999)

  12. A. Maiti, A. Svizhenko, M.P. Anantram, Phys. Rev. Lett. 88, 126805 (2002)

    Article  Google Scholar 

  13. A. Rochefort, P. Avouris, F. Lesage, D.R. Salahub, Phys. Rev. B 60, 13824 (1999)

    Article  Google Scholar 

  14. T.A. Gloor, F. Mila, Europhys. Lett. 61, 513 (2003)

    Article  Google Scholar 

  15. A. Kleiner, S. Eggert, Phys. Rev. B 64, 113402 (2001)

    Article  Google Scholar 

  16. W.A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond (Dover Publications, 1989)

  17. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  Google Scholar 

  18. B.T. Kelly, Physics of graphite (Applied Science, 1981)

  19. E. Jeckelmann, D. Baeriswyl, Synthetic Metals 69, 651 (1995)

    Article  Google Scholar 

  20. S. Chakravarty, S. Khlebnikov, S. Kivelson, Phys. Rev. Lett. 69, 212 (1992)

    Article  Google Scholar 

  21. O. Gunnarsson, G. Zwicknagl, Phys. Rev. Lett. 69, 957 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gloor.

Additional information

Received: 29 December 2003, Published online: 20 April 2004

PACS:

62.25. + g Mechanical properties of nanoscale materials - 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) - 71.20.Tx Fullerenes and related materials; intercalation compounds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloor, T.A., Mila, F. Strain induced correlation gaps in carbon nanotubes. Eur. Phys. J. B 38, 9–12 (2004). https://doi.org/10.1140/epjb/e2004-00092-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00092-2

Keywords

Navigation