Skip to main content
Log in

Analysis of low temperature specific heat in the ferromagnetic state of the Ca-doped manganites

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract

The reported specific heat C (T) data of the perovskite manganites La1-x Ca x MnO3, with x = 0.1, 0.2 and 0.33, is theoretically investigated in the temperature domain \(4 \le T \le 10\) K. Calculations of C (T) have been made within the two component scheme: one is the Fermionic and the other is Bosonic (phonon or magnon) contribution. Lattice specific heat is well estimated from the Debye model and Debye temperature for Ca doped lanthanum manganites is obtained following an overlap repulsive potential. Fermionic component as the electronic specific heat coefficient is deduced using the band structure calculations for ferromagnetic metallic phase. Later on, for x = 0.1, following double exchange mechanism the role of magnons is assessed towards specific heat and find that at much low temperatures (T < 10 K), specific heat increases and show almost T 3/2 dependence on the temperature. We note that, the lattice specific heat is smaller for x = 0.1 when compared to that of magnon specific heat below 10 K. For x = 0.2, i.e., in the ferromagnetic metallic phase the magnon contribution is larger with the electron contribution while the reverse is true for x = 0.33. It is further noticed that in the ferromagnetic metallic phase, electronic specific heat is small in comparison to the lattice specific heat in low temperature domain. The present investigations allow us to believe that electron correlations are essential to enhanced density of state over simple Fermi liquid approximation in the metallic phase of La1-x Ca x MnO3 (x = 0.2, 0.33). The present numerical analysis of specific heat shows similar results as those revealed from experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950); J.H. Van Santen, G.H. Jonker, Physica 16, 599 (1950)

    Article  ADS  Google Scholar 

  2. C. Zener, Phys. Rev. 82, 403 (1951); P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  ADS  Google Scholar 

  3. A.J. Millis, P.B. Littlewood, B.I. Shrainman, Phys. Rev. Lett. 74, 5144 (1995); A.J. Millis, B.I. Shrainman, R. Mueller, Phys. Rev. Lett. 75, 175 (1996)

    Article  ADS  Google Scholar 

  4. T. Mizokawa, A. Fujimori, Phys. Rev. B 51, 12880 (1995)

    Article  ADS  Google Scholar 

  5. J.B. Goodenough, Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

  6. J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959)

    Article  ADS  Google Scholar 

  7. P. Dai, J. Zhang, H.A. Mook, S.-H. Liou, P.A. Dowben, E.W. Plummer, Phys. Rev. B 54, R3694 (1996)

  8. K.H. Kim, J.Y. Gu, H.S. Choi, G.W. Park, T.W. Noh, Phys. Rev. Lett. 77, 1877 (1996)

    Article  ADS  Google Scholar 

  9. A.M. Oleś, Louis F. Feiner, Phys. Rev. B 65, 052414 (2002)

    Article  ADS  Google Scholar 

  10. T.G. Perring, G. Aeppli, S.M. Hayden, S.A. Carter, J.P. Remeika, S.-W. Cheong, Phys. Rev. Lett. 77, 711 (1996)

    Article  ADS  Google Scholar 

  11. J.W. Lynn, R.W. Erwin, J.A. Borchers, Q. Huang, A. Santoro, Phys. Rev. Lett. 76, 4046 (1996)

    Article  ADS  Google Scholar 

  12. M.C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo, Y. Tokura, Phys. Rev. B 53, 14285 (1996)

    Article  ADS  Google Scholar 

  13. F. Moussa, M. Hennion, J. Roderiguez-Carvajal, H. Moudden, L. Pinsard, A. Revcnolevschi, Phys. Rev. B 54, 15149 (1996)

    Article  ADS  Google Scholar 

  14. A.P. Ramirez, P. Schiffer, S.-W. Cheong, C.H. Chen, W. Bao, T.T.M. Palstra, P.L. Gammel, D.J. Bisho, B. Zegarski, Phys. Rev. Lett. 76, 3188 (1996)

    Article  ADS  Google Scholar 

  15. V.N. Smolyaninova, A. Biswas, X. Zhang, K.H. Kim, Bog-Gi Kim, S.-W. Cheong, R.L. Greene, Phys. Rev. B 62, R6093 (2000)

  16. J.M.D. Coey, M. Viret, L. Ranno, K. Ounadjela, Phys. Rev. Lett. 75, 3910 (1995)

    Article  ADS  Google Scholar 

  17. T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 81, 3203 (1998)

    Article  ADS  Google Scholar 

  18. B.F. Woodfield, M.L. Wilson, J.M. Byers, Phys Rev. Lett. 78, 3201 (1997)

    Article  ADS  Google Scholar 

  19. J.E. Gordon, R.A. Fisher, Y.X. Jia, N.E. Phillips, S.F. Reklis, D.A. Wright, A. Zettl, Phys. Rev. B 59, 127 (1999)

    Article  ADS  Google Scholar 

  20. M.R. Lees, O.A. Petrenko, G. Balakrishnan, D. Mck. Paul, Phys. Rev. B 59, 1298 (1999)

    Article  ADS  Google Scholar 

  21. L. Ghivelder, I. Abrego Castillo, N.M. Alford, G.H. Tomka, P.C. Riedi, J. MacManus-Driscoll, A.K.M. Akther Hossain, L.F. Cohen, J. Magn. Magn. Mater. 189, 274 (1998)

    Article  ADS  Google Scholar 

  22. J.J. Hamilton, E.L. Keatley, H.L. Ju, A.K. Raychaudhuri, V.N. Smolyaninova, R.L. Greene, Phys. Rev. B 54, 14926 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Varshney, K. Choudhary, R.K. Singh, Supercond. Sci. Technol. 15, 1119 (2002)

    Article  ADS  Google Scholar 

  24. E.S.R. Gopal, Specific Heat at Low Temperature (Plenum, New York, 1966)

  25. J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990)

    Article  ADS  Google Scholar 

  26. C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc., New York, 1987)

  27. R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishanan, R. Mahesh, N. Rangavittal, C.N.R. Rao, Phys. Rev. B 53, 3348 (1996)

    Article  ADS  Google Scholar 

  28. J. Blasco, J. Garcia, J.M. de Teresa, M.R. Ibarra, J. Perez, P.A. Algarabel, C. Marquina, C. Ritter, Phys. Rev. B 55, 8905 (1997)

    Article  ADS  Google Scholar 

  29. D. Varshney, M.P. Tosi, J. Phys. Chem. Solids 61, 683 (2000)

    Article  ADS  Google Scholar 

  30. P. Schiffer, A.P. Ramirez, W. Bao, S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995)

    Article  ADS  Google Scholar 

  31. W.E. Pickett, D.J. Singh, Phys. Rev. B 53, 1146 (1996)

    Article  ADS  Google Scholar 

  32. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Phys. Rev. Lett. 70, 2126 (1993)

    Article  ADS  Google Scholar 

  33. G.J. Snyder, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Phys. Rev. B 53, 14434 (1996)

    Article  ADS  Google Scholar 

  34. N.W. Ashcroft, N.D. Mermin, Solid State Physics (W.B. Saunders Co., New York, 1976), pp. 346

  35. P. Fulde, J. Jensen, Phys. Rev. B 27, 9085 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Varshney.

Additional information

Received: 23 October 2003, Published online: 2 April 2004

PACS:

65.40.Ba Heat capacity - 72.80.Ga Transition-metal compounds - 74.25.Kc Phonons - 75.50.Cc Other ferromagnetic metals and alloys

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, D., Kaurav, N. Analysis of low temperature specific heat in the ferromagnetic state of the Ca-doped manganites. Eur. Phys. J. B 37, 301–309 (2004). https://doi.org/10.1140/epjb/e2004-00060-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00060-x

Keywords

Navigation