Skip to main content
Log in

Symmetric Hubbard systems with superconducting magnetic response

  • Original Paper
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

In purely repulsive, C 4v -symmetric Hubbard clusters a correlation effect produces an effective two-body attraction and pairing; the key ingredient is the availability of W=0 pairs, that is, two-body solutions of appropriate symmetry. We study the tunneling of bound pairs in rings of 5-site units connected by weak intercell links; each unit has the topology of a CuO4 cluster and a repulsive interaction is included on every site. Further, we test the superconducting nature of the response of this model to a threading magnetic field. We present a detailed numerical study of the two-unit ring filled with 6 particles and the three-unit ring with 8 particles; in both cases a lower filling yields normal behavior. In previous studies on 1d Hubbard chains, level crossings were reported (half-integer or fractional Aharonov-Bohm effect) which however cannot be due to superconducting pairs. In contrast, the nontrivial basis of clusters carrying W=0 pairs leads to genuine Superconducting Flux Quantization (SFQ). The data are understood in terms of a cell-perturbation theory scheme which is very accurate for weak links. This low-energy approach leads to an effective hard core boson Hamiltonian which naturally describes itinerant pairs and SFQ in mesoscopic rings. For the numerical calculations, we take advantage of a recently proposed exact diagonalization technique which can be generally applied to many-fermion problems and drastically reduces the size of the matrices to be handled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  MATH  Google Scholar 

  2. R.M. Fye, M.J. Martins, D.J. Scalapino, J. Wagner, W. Hanke, Phys. Rev. B 44, 6909 (1991)

    Article  Google Scholar 

  3. F.V. Kusmartsev, J. Phys.: Condens. Matter 3, 3199 (1991)

    Article  Google Scholar 

  4. A.J. Schofield, J.M. Wheatley, T. Xiang, Phys. Rev. B 44, 8349 (1991)

    Article  Google Scholar 

  5. N. Yu, M. Fowler, Phys. Rev. B 45, 11795 (1992)

    Article  Google Scholar 

  6. F.V. Kusmartsev, J.F. Weisz, R. Kishore, M. Takahashi, Phys. Rev. B 49, 16234 (1994)

    Article  Google Scholar 

  7. E.H. Lieb, F. Wu, Phys. Rev. Lett. 20, 1445 (1968)

    Article  Google Scholar 

  8. A. Ferretti, I.O. Kulik, A. Lami, Phys. Rev. B 45, 5486 (1992)

    Article  Google Scholar 

  9. F. Nakano, J. Phys. A 33, 5429 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Sudb, C.M. Varma, T. Giamarchi, E.B. Stechel, R.T. Scalettar, Phys. Rev. Lett. 70, 978 (1993)

    Article  Google Scholar 

  11. L. Arrachea, A.A. Aligia, Phys. Rev. Lett. 73, 2240 (1994)

    Article  Google Scholar 

  12. L. Arrachea, A.A. Aligia, E. Gagliano, Phys. Rev. Lett. 76, 4396 (1996)

    Article  Google Scholar 

  13. A. Ferretti, I.O. Kulik, A. Lami, Phys. Rev. B 47, 12235 (1993)

    Article  Google Scholar 

  14. G.S. Canright, S.M. Girvin, Int. J. Mod. Phys. B 3, 1943 (1989)

    Google Scholar 

  15. F.F. Assaad, W. Hanke, D.J. Scalapino, Phys. Rev. Lett. 71, 1915 (1993)

    Article  Google Scholar 

  16. L. Arrachea, A.A. Aligia, Phys. Rev. B 61, 9686 (2000)

    Article  Google Scholar 

  17. P.W. Anderson, Science 235, 1196 (1987)

    Google Scholar 

  18. M. Cini, G. Stefanucci, A. Balzarotti, Eur. Phys. J. B 10, 293 (1999)

    Article  Google Scholar 

  19. M. Cini, G. Stefanucci, A. Balzarotti, Solid State Commun. 109, 229 (1999)

    Article  Google Scholar 

  20. D. Zanchi, H.J. Schulz, Z. Phys.: Condens. Matter B 103, 339 (1997)

    Article  Google Scholar 

  21. C.J. Halboth, W. Metzner, Phys. Rev. B 61, 7364 (2000)

    Article  Google Scholar 

  22. C. Honerkamp, M. Salmhofer, N. Furukawa, T.M. Rice, Phys. Rev. B 63, 035109 (2001)

    Article  Google Scholar 

  23. N.E. Bickers, D.J. Scalapino, S.R. White, Phys. Rev. Lett. 62, 961 (1989)

    Article  Google Scholar 

  24. W. Fettes, I. Morgensten, Eur. Phys. J. B 9, 635 (1999) and references therein

    Article  Google Scholar 

  25. M. Cini, A. Balzarotti, Il Nuovo Cimento D 18, 89 (1996)

    Google Scholar 

  26. M. Cini, A. Balzarotti, J. Phys. C 8, L265 (1996)

  27. M. Cini, A. Balzarotti, Solid State Comm. 101, 671 (1997)

    Google Scholar 

  28. M. Cini, A. Balzarotti, Phys. Rev. B 56, 14711 (1997)

    Article  Google Scholar 

  29. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  Google Scholar 

  30. M. Arjunwadkar, G. Baskaran, R. Basu, V.N. Mathumukar, Phys. Rev. Lett. 70, 674 (1993)

    Article  Google Scholar 

  31. M. Cini, G. Stefanucci, E. Perfetto, A. Callegari, J. Phys.: Cond. Matt. 14, L709 (2002)

  32. M. Cini, A. Balzarotti, G. Stefanucci, Eur. Phys. J. B 14, 269 (2000)

    Article  Google Scholar 

  33. S. Mazumdar, F. Guo, D. Guo, K.C. Ung, J.T. Gammel, Proceeding of the Discussion meeting on strongly correlated electron systems in chemistry, Bangalore, India (Springer Verlag 1996)

  34. W. Kohn, J. Luttinger, Phys. Rev. Lett. 15, 524 (1965)

    Article  Google Scholar 

  35. R. Shankar, Rev. Mod. Phys. 66, 129 (1994)

    Google Scholar 

  36. A.V. Chubukov, Phys. Rev. B 48, 1097 (1993)

    Article  Google Scholar 

  37. E. Perfetto, G. Stefanucci, M. Cini, Phys. Rev. B 66, 165434 (2002)

    Article  Google Scholar 

  38. H.B. Schttler, A.J. Fedro, Phys. Rev B 45, 7588 (1992)

    Article  Google Scholar 

  39. J.H. Jefferson, H. Eskes, L.F. Feiner, Phys. Rev. B 45, 7959 (1992)

    Article  Google Scholar 

  40. V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

    Article  Google Scholar 

  41. F. Bloch, Z. Physik 61, 206 (1930)

    MATH  Google Scholar 

  42. L. Hulthen, Arkiv. Mat. Astron. Fysik 26 A, No. 11 (1938)

  43. R. Orbach, Phys. Rev. 112, 309 (1958)

    Google Scholar 

  44. H.A. Bethe, Z. Physik 71, 205 (1931)

    MATH  Google Scholar 

  45. C.N. Yang, C.P Yang, Phys. Rev. 147, 303 (1966)

    Google Scholar 

  46. B.S. Shastry, B. Sutherland, Phys. Rev. Lett. 65, 243 (1990)

    MathSciNet  MATH  Google Scholar 

  47. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990)

    Article  Google Scholar 

  48. A.A. Aligia, Phys. Rev. B 61, 7028 (2000)

    Google Scholar 

  49. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989)

    MathSciNet  Google Scholar 

  50. W.A. Little, R.D. Parks, Phys. Rev. Lett. 9, 9 (1962)

    Article  Google Scholar 

  51. W. Kohn, Phys. Rev. 133, A171 (1964)

  52. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Article  Google Scholar 

  53. Using as above \(U=5 t\) one finds \(E^{(0)}_{CuO_4}(2)=-3.13962 t\), and \(E^{(0)}_{CuO_4}(4)=-2.708931 t\)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cini.

Additional information

Received: 14 July 2003, Published online: 9 September 2003

PACS:

71.27.+a Strongly correlated electron systems; heavy fermions - 74.20.Mn Nonconventional mechanisms - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Callegari, A., Cini, M., Perfetto, E. et al. Symmetric Hubbard systems with superconducting magnetic response. Eur. Phys. J. B 34, 455–466 (2003). https://doi.org/10.1140/epjb/e2003-00244-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00244-x

Keywords

Navigation