Skip to main content
Log in

Influence of temperature on the nodal properties of the longitudinal thermal conductivity of YBa\(\mathsf{_2}\)Cu\(\mathsf{_3}\)O\(\mathsf{_{7-x}}\)

  • Original Paper
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The angle dependence at different temperatures of the longitudinal thermal conductivity \(\kappa_{xx}(\theta)\) in the presence of a planar magnetic field is presented. In order to study the influence of the gap symmetry on the thermal transport, angular scans were measured up to a few Kelvin below the critical temperature Tc. We found that the four-fold oscillation of \(\kappa_{xx}(\theta)\) vanishes at T > 20K and transforms into a one-fold oscillation with maximum conductivity for a field of 8 T applied parallel to the heat current. Nevertheless, the results indicate that the d-wave pairing symmetry remains the main pairing symmetry of the order parameter up to Tc. Numerical results of the thermal conductivity using an Andreev reflection model for the scattering of quasiparticles by supercurrents under the assumption of d-wave symmetry provide a semiquantitative description of the overall results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tsuei, J. Kirtley, Rev. Mod. Phys. 72, 969 (2000)

    Article  Google Scholar 

  2. H. Aubin, K. Behnia, M. Ribault, R. Gagnon, L. Taillefer, Phys. Rev. Lett. 78, 2624 (1997)

    Article  Google Scholar 

  3. M. Salamon, F. Yu, V.N. Kopylov, J. Superconductivity 8, 449 (1995)

    Google Scholar 

  4. R. Ocaña, P. Esquinazi, Phys. Rev. B 66, 064525 (2002)

    Article  Google Scholar 

  5. F. Yu, M.B. Salamon, A.J. Leggett, W.C. Lee, D.M. Ginsberg, Phys. Rev. Lett. 74, 5136 (1995)

    Article  Google Scholar 

  6. R.A. Klemm, A.M. Goldman, A. Bhattacharya, J. Buan, N.E. Israeloff, C.C. Huang, O.T. Valls, J.Z. Liu, R.N.Shelton, U. Welp, Phys. Rev. Lett. 77, 3058 (1996)

    Article  Google Scholar 

  7. F. Yu, M.B. Salamon, A.J. Leggett, W.C. Lee, D.M.Ginsberg, Phys. Rev. Lett. 77, 3059 (1996)

    Article  Google Scholar 

  8. J. Bardeen, G. Rickayzen, L. Tewordt, Phys. Rev. 15, 982 (1959)

    Article  Google Scholar 

  9. A. Taldenkov, P. Esquinazi, K. Leicht, J. Low Temp. Phys. 115, 15 (1999)

    Article  Google Scholar 

  10. R. Ocaña, A. Taldenkov, P. Esquinazi, Y. Kopelevich, J. Low Temp. Phys. 123, 181 (2001)

    Article  Google Scholar 

  11. R. Ocaña, P. Esquinazi, Phys. Rev. Lett. 87, 167006 (2001)

    Article  Google Scholar 

  12. A. Inyuskin, K. Leicht, P. Esquinazi, Cryogenics 38, 299 (1998)

    Article  Google Scholar 

  13. P. Hirschfeld, W. Putikka, Phys. Rev. Lett. 77, 3909 (1996)

    Article  Google Scholar 

  14. P.J. Hirschfeld, cond-mat/9809092 (unpublished)

  15. C. Kübert, P. Hirschfeld, Phys. Rev. Lett. 80, 4963 (1998)

    Article  Google Scholar 

  16. B. Zeini , Eur. Phys. J. B 20, 189 (2001)

    Google Scholar 

  17. D. Bonn , Phys. Rev. B 47, 11314 (1993)

    Article  Google Scholar 

  18. M. Houssa, M. Ausloss, Phys. Rev. B 51, 9372 (1995)

    Article  Google Scholar 

  19. M. Houssa, M. Ausloss, Physica C 257, 321 (1996)

    Article  Google Scholar 

  20. R.C. Yu, M.B. Salamon, J.P. Lu, W.C. Lee, Phys. Rev. Lett. 69, 1431 (1992)

    Article  Google Scholar 

  21. B. Zeini, A. Freimuth, B. Büchner, R. Gross, A.P. Kampf, M. Kläser, G. Müller-Vogt, Phys. Rev. Lett. 82, 2175 (1999)

    Article  Google Scholar 

  22. K. Krishana, N.P. Ong, Y. Zhang, Z.A. Xu, R. Gagnon, L. Taillefer, Phys. Rev. Lett. 82, 5108 (1999)

    Article  Google Scholar 

  23. H. Won, K. Maki, cond-mat/0004105

  24. H. Won, K. Maki, Current Appl. Phys. 1, 291 (2001)

    Article  Google Scholar 

  25. A. Andreev, Sov. Phys. JETP 19, 1228 (1964)

    Google Scholar 

  26. A. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994)

    Article  Google Scholar 

  27. I. Vekhter, A. Houghton, Phys. Rev. Lett. 83, 4626 (1999)

    Article  Google Scholar 

  28. M. Houssa, M. Ausloss, Europhys. Lett. 33, 695 (1996)

    Google Scholar 

  29. S. Quinlan, D. Scalapino, N. Bulut, Phys. Rev. B 49, 1470 (1994)

    Article  Google Scholar 

  30. Y. Ando, J. Takeya, Y. Abe, X. Sun, A. Lavrov, Phys. Rev. Lett. 88, 147004 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Esquinazi.

Additional information

Received: 7 March 2003, Published online: 4 August 2003

PACS:

74.25.Fy Transport properties (electric and thermal conductivity, thermoelectric effects, etc.) - 74.72.Bk Y-based cuprates - 72.15.-v Electronic conduction in metals and alloys

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocaña, R., Esquinazi, P. Influence of temperature on the nodal properties of the longitudinal thermal conductivity of YBa\(\mathsf{_2}\)Cu\(\mathsf{_3}\)O\(\mathsf{_{7-x}}\) . Eur. Phys. J. B 34, 135–142 (2003). https://doi.org/10.1140/epjb/e2003-00205-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00205-5

Keywords

Navigation