Skip to main content
Log in

Ab initio Calculation of the Effective Thermal Conductivity Coefficient of a Superlattice Using the Boltzmann Transport Equation

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The effective thermal conductivity coefficient of a binary semiconductor heterostructure is calculated by an example of the GaAs/AlAs superlattice at different layer periods and different ambient temperatures. The applicability of the Fourier-law models is strongly limited on the investigated scale, since they do not take into account the quantum-mechanical properties of materials, which leads to a large deviation from the experimental data. However, the use of molecular dynamics methods allows us to obtain accurate solutions; however, these methods are much more demanding of computing resources and require a nontrivial potential selection problem to be solved. In the investigations of the nanostructures, good results are obtained using the methods based on solving the Boltzmann transport equation for phonons; they make it possible to obtain a fairly accurate solution at a lower computational complexity compared with the molecular dynamics methods. To calculate the thermal conductivity coefficient, a modal suppression model is used, which approximates the solution of the Boltzmann transport equation for phonons. The dispersion and phonon scattering parameters are obtained using ab initio calculations. The two-phonon processes related to the isotopic disorder and the barrier three-phonon scattering processes are taken into account. To increase the accuracy of the calculations, the inhomogeneity of the distribution of materials over the superlattice layers is taken into account. A comparison of the results obtained with the experimental data shows their close agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Carrete, J., Vermeersch, B., Katre, A., van Roekeg-hem, A., Wang, T., Madsen, G.K.H., and Mingo, N., almaBTE: a solver of the space-time dependent Boltzmann transport equation for phonons in structured materials, Comput. Phys. Commun., 2017, vol. 220, pp. 351–362. https://doi.org/10.1016/j.cpc.2017.06.023

    Article  MathSciNet  MATH  Google Scholar 

  2. Khvesyuk, V.I. and Skryabin, A.S., Heat conduction in nanostructures, High Temp., 2017, vol. 55, no. 3, pp. 434–456.https://doi.org/10.1134/S0018151X17030129

    Article  Google Scholar 

  3. Van Roekeghem, A., Vermeersch, B., Carrete, J., and Mingo, N., Thermal resistance of GaN/AlN graded interfaces, Phys. Rev. Appl., 2019, vol. 11, no. 3. https://doi.org/10.1103/physrevapplied.11.034036

  4. McGaughey, A.J.H. and Kaviany, M., Phonon transport in molecular dynamics simulations: formulation and thermal conductivity prediction, Adv. Heat Transfer, 2006, vol. 39, pp. 169–255. https://doi.org/10.1016/s0065-2717(06)39002-8

    Article  Google Scholar 

  5. Zhang, X.-L. and Sun, Zh.-W., Molecular dynamics simulation on thermal boundary resistance of superlattice structure, J. Aero. Mat., 2011, Vol. 31, no. 4, pp. 7–10. https://doi.org/10.3969/j.issn.1005-5053.2011.4.002

    Article  Google Scholar 

  6. Abgaryan, K.K., Evtushenko, Yu.G., Mutigullin, I.V., and Uvarov, S.I., Molecular dynamic modeling of the initial stages of Si(111) surface nitridization in NH3 atmosphere, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2015, vol. 18, no. 4, pp. 267–272. https://doi.org/10.17073/1609-3577-2015-4-267-272

    Article  Google Scholar 

  7. Vallabhaneni, A.K., Chen, L., Gupta, M.P., and Kumar, S., Solving nongray Boltzmann transport equation in gallium nitride, J. Heat Transfer, 2017, vol. 139, no. 10, p. 102701. https://doi.org/10.1115/1.4036616

    Article  Google Scholar 

  8. Loy, J.M., Murthy, J.Y., and Singh, D., A fast hybrid Fourier-Boltzmann transport equation solver for nongray phonon transport, J. Heat Transfer, 2012, vol.135, no. 1, p. 011008. https://doi.org/10.1115/1.4007654

    Article  Google Scholar 

  9. Chung, J.D., McGaughey, A.J.H., and Kaviany, M., Role of phonon dispersion in lattice thermal conductivity modeling, J. Heat Transfer, 2004, vol. 126, no. 3, p. 376. https://doi.org/10.1115/1.1723469

    Article  Google Scholar 

  10. Barinov, A.A., Chzhan, K., Bin’, L., and Khvesyuk, V.I., Development of methods for calculating the thermal conductivity of thin films, Nauka Obrazov., 2017, no. 06, pp. 56–71. https://doi.org/10.7463/0617.0001221

  11. Vermeersch, B., Carrete, J., and Mingo, N., Cross-plane heat conduction in thin films with ab-initio phonon dispersions and scattering rates, Appl. Phys. Lett., 2016, vol. 108, no. 19, p. 193104. https://doi.org/10.1063/1.4948968

    Article  Google Scholar 

  12. Broido, D.A., Malorny, M., Birner, G., Mingo, N., and Stewart, D.A., Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett., 2007, vol. 91, no. 23, p. 231922. https://doi.org/10.1063/1.2822891

    Article  Google Scholar 

  13. Length-Scale Dependent Phonon Interactions, Topics in Applied Physics, Shinde, S.L. and Srivastava, G.P., Eds., New York: Springer, 2014. https://doi.org/10.1007/978-1-4614-8651-0

  14. Bellaiche, L. and Vanderbilt, D., Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites, Phys. Rev. B, 2000, vol. 61, no. 12, pp. 7877–7882. https://doi.org/10.1103/physrevb.61.7877

    Article  Google Scholar 

  15. Li, W., Lindsay, L., Broido, D.A., Stewart, D.A., and Mingo, N., Thermal conductivity of bulk and nanowire Mg2SixSn1–x alloys from first principles, Phys. Rev. B, 2012, vol. 86, no. 17. https://doi.org/10.1103/physrevb.86.174307

  16. Li, W., Carrete, J., Katcho, A., and Mingo, N., ShengBTE: a solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun., 2014, vol. 185, no. 6, pp. 1747–1758. https://doi.org/10.1016/j.cpc.2014.02.015

    Article  MATH  Google Scholar 

  17. Kundu, A., Mingo, N., Broido, D.A., and Stewart, D.A., Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys, Phys. Rev. B, 2011, vol. 84, no. 12. https://doi.org/10.1103/physrevb.84.125426

  18. Ward, A., Broido, D.A., Stewart, D.A., and Deinzer, G., Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B, 2009, vol. 80, no. 12. https://doi.org/10.1103/physrevb.80.125203

  19. Carrete, J., Vermeersch, B., Thumfart, L., Kakodkar, R.R., Trevisi, G., Frigeri, P., et al., Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity, J. Phys. Chem. C, 2018, vol. 122, no. 7, pp. 4054–4062. https://doi.org/10.1021/acs.jpcc.7b11133

    Article  Google Scholar 

  20. Wang, Y., Shang, S.-L., Fang, H., Liu, Z.-K., and Chen, L.-Q., First-principles calculations of lattice dynamics and thermal properties of polar solids, Npj Comput. Mater., 2016, vol. 2, no. 1. https://doi.org/10.1038/npjcompumats.2016.6

  21. Wang, Y., Wang, J.J., Wang, W.Y., Mei, Z.G., Shang, S.L., Chen, L.Q., and Liu, Z.K., A mixed-space approach to first-principles calculations of phonon frequencies for polar materials, J. Phys.: Condens. Matter, 2010, vol. 22, no. 20, p. 202201. https://doi.org/10.1088/0953-8984/22/20/202201

    Article  Google Scholar 

  22. Spaldin, N.A., A beginner’s guide to the modern theory of polarization, J. Solid State Chem., 2012, vol. 195, pp. 2–10. https://doi.org/10.1016/j.jssc.2012.05.010

    Article  Google Scholar 

  23. Capinski, W.S., Maris, H.J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D.S., Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique, Phys. Rev. B, 1999, vol. 59, no. 12, pp. 8105–8113. https://doi.org/10.1103/physrevb.59.8105

    Article  Google Scholar 

  24. Benaim, M., On the functional approximation with normalized Gaussian units, Neural Comput., 1994, vol. 6, pp. 314–333. https://doi.org/10.1162/neco.1994.6.2.319

    Article  Google Scholar 

  25. Haykin, S.S., Neural Networks: A Comprehensive Foundation, 2nd ed., Englewood Cliffs: Prentice-Hall, 1999, p. 936.

    MATH  Google Scholar 

  26. Hardy, R.L., Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 1971, vol. 76, no. 8, pp. 1905–1915. https://doi.org/10.1029/JB076i008p01905

    Article  Google Scholar 

  27. Vasilyev, A.N., Kolbin, I.S., and Reviznikov, D.L., Meshfree computational algorithms based on normalized radial basis functions, in Advances in Neural Networks, Lect. Notes Comput. Sci., 2016, vol. 9719, pp. 583–591. https://doi.org/10.1007/978-3-319-40663-367

  28. Bugmann, G., Normalized Gaussian radial basis function networks, Neurocomputing, 1998, vol. 20, no. 1/3, pp. 97–110. https://doi.org/10.1016/S0925-2312(98)00027-7

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The computations were made on a computing cluster of the Federal Research Center “Informatics and Management,” Russian Academy of Sciences.

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 19-08-01191_a and 18-29-03100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Abgaryan.

Additional information

Translated by E. Bondareva

The article is based on a report presented at the 1st International Conference on “Mathematical Modeling in Materials Science of Electronic Components,” Moscow, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abgaryan, K.K., Kolbin, I.S. Ab initio Calculation of the Effective Thermal Conductivity Coefficient of a Superlattice Using the Boltzmann Transport Equation. Russ Microelectron 49, 594–599 (2020). https://doi.org/10.1134/S1063739720080028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739720080028

Keywords:

Navigation