Skip to main content
Log in

Latest trends in the ever-surprising field of mass measurements

  • ENAM 2004
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The binding energy of the nucleus, from its mass, continues to be of importance --not only for various aspects of nuclear physics itself, but for other branches of physics such as weak-interaction studies and stellar nucleosynthesis. The number of dedicated programs is increasing worldwide with recent results reflecting experimental achievements worthy of admiration. A brief description is offered of the modern experimental techniques dedicated to the particularly challenging task of measuring the mass of exotic nuclides and detailed comparisons are made in order to present future projects in a critical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ilic, J. Appl. Phys. 95, 3694 (2004).

    Article  Google Scholar 

  2. P. Schewe, J. Riordon, B. Stein, Phys. News Update 673, 2 (2004) (http://www.aip.org/pnu/2004/split/ 673-2.html).

    Google Scholar 

  3. B. Ilic, Appl. Phys. Lett. 85, 2604 (2004).

    Article  Google Scholar 

  4. J.C. Hardy, these proceedings.

  5. S. Goriely, these proceedings.

  6. S. Rainville, J.K. Porto, D.E. Prichard, Science 303, 334 (2004).

    Article  PubMed  Google Scholar 

  7. R. Davis, Metrologia 40, 299 (2004)

    Article  Google Scholar 

  8. J.K. Webb, Phys. Rev. Lett. 87, 091301 (2001).

    Article  PubMed  Google Scholar 

  9. M. Fischer, Phys. Rev. Lett. 92, 230802 (2004).

    Article  PubMed  Google Scholar 

  10. K.A. Olive, Y.-Z. Qian, Phys. Today, October issue, p. 40 (2004).

  11. J. Verdu, Phys. Rev. Lett. 92, 093002 (2004).

    Article  PubMed  Google Scholar 

  12. O. Bohigas, P. Leboeuf, Phys. Rev. Lett. 88, 092502 (2002)

    Article  PubMed  Google Scholar 

  13. J. Hirsch, A. Frank, P. Van Isacker, these proceedings.

  14. J. Äystö, P. Dendooven, A. Jokinen, M. Leino (Editors), ENAM01 proceedings (Springer-Verlag, 2002).

  15. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).

    Article  Google Scholar 

  16. D. Lunney, G. Audi, H.-J. Kluge (Editors), Atomic Physics at Accelerators: Mass Spectrometry (Kluwer Academic Publishers, Dordrecht, 2001)

  17. G. Savard, these proceedings.

  18. H. Savajols, these proceedings.

  19. A.-S. Lallemand, Hyperfine Interact. 132, 514 (2001).

    Google Scholar 

  20. H. Geissel, Nucl. Phys. A 685, 115c (2001).

    Article  Google Scholar 

  21. Yu. Litvinov, PhD Thesis, Justus Liebig University, Giessen (2004) and GSI Thesis 2004-05

  22. M. Stadlmann, Phys. Lett. B 586, 27 (2004).

    Article  Google Scholar 

  23. M. Matos, PhD Thesis, Justus Liebig University, Giessen (2004).

  24. E. Kaza, PhD Thesis, Justus Liebig University, Giessen (2004).

  25. D. Lunney, Phys. Rev. C 64, 054311 (2001).

    Article  Google Scholar 

  26. CERN Courier 44, May issue, p. 26 (2004).

  27. C. Bachelet, these proceedings.

  28. F. Herfurth, these proceedings.

  29. C. Guénaut, these proceedings.

  30. J. Van Roosbroeck, Phys. Rev. Lett. 92, 112501 (2004).

    Article  PubMed  Google Scholar 

  31. A. Kellerbauer, Phys. Rev. Lett. 93, 072502 (2004).

    Article  PubMed  Google Scholar 

  32. M. Mukherjee, Phys. Rev. Lett. 93, 150801 (2004).

    Article  PubMed  Google Scholar 

  33. J.A. Clark, these proceedings.

  34. Wang, these proceedings.

  35. J.A. Clark, Phys. Rev. Lett. 92, 192501 (2003).

    Article  Google Scholar 

  36. V. Kolhinen, PhD Thesis, University of Jyväskylä (2003).

  37. V. Kolhinen, Nucl. Instrum. Methods A 528, 776 (2004).

    Google Scholar 

  38. S. Rinta-Antila, Phys. Rev. C 70, 011304(R) (2004).

    Article  Google Scholar 

  39. A. Jokinen, these proceedings.

  40. G. Bollen, these proceedings.

  41. M. Block, these proceedings.

  42. D. Habs, these proceedings.

  43. J. Dilling, these proceedings.

  44. F. Sarazin, Phys. Rev. Lett. 84, 5062 (2000).

    Article  PubMed  Google Scholar 

  45. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  Google Scholar 

  46. G. Savard, Phys. Rev. C 70, 042501(R) (2004).

    Article  Google Scholar 

  47. M. Chartier, private communication (2004)

  48. C. Weber, the ISOLTRAP Collaboration, these proceedings.

  49. A. Kellerbauer, Eur. Phys. J. D 22, 53 (2003).

    Google Scholar 

  50. P. Delahaye, the ISOLTRAP Collaboration, private communication (2004).

  51. G.F. Lima, Phys. Rev. C 65, 044618 (2002).

    Article  Google Scholar 

  52. A. Woehr, Nucl. Phys. A 742, 349 (2004).

    Article  Google Scholar 

  53. Issmer, Eur. Phys. J. A 2, 173 (1998).

    Google Scholar 

  54. G. Audi, A.H. Wapstra, Nucl. Phys. A 565, 1 (1993).

    Article  Google Scholar 

  55. C.J. Barton, Phys. Rev. C 67, 034310 (2003).

    Article  Google Scholar 

  56. C. Weber, the SHIPTRAP Collaboration, these proceedings.

  57. W. Plass, S. Eliseev, University of Giessen (IONAS), private communication (2004).

  58. P. Hausladen, these proceedings.

  59. http://www.gsi.de/zukunftsprojekt/index\_e.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lunney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunney, D. Latest trends in the ever-surprising field of mass measurements. Eur. Phys. J. A 25 (Suppl 1), 3–8 (2005). https://doi.org/10.1140/epjad/i2005-06-119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjad/i2005-06-119-8

PACS.

Navigation