Skip to main content
Log in

Screening length in a soft wall AdS/QCD model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the screening length of a moving heavy quarkonium (i.e., \(Q\bar{Q}\) pair) at finite temperature and chemical potential using a soft wall AdS/QCD model with conformal invariance broken by a background dilaton. We discuss the pair’s axis parallel and perpendicular to the hot wind, respectively. It turns out that for both cases the presence of confining scale increases the screening length, reverse to the effects of chemical potential, velocity and temperature. Moreover, the effects of confining scale and temperature on the screening length for the parallel case are virtually the same as for the perpendicular case, but the effect of velocity on the screening length is more pronounced for the perpendicular case when the velocity is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. E.V. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004)

    ADS  CAS  Google Scholar 

  2. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    ADS  CAS  Google Scholar 

  3. O. Kaczmarek, F. Karsch, F. Zantow, P. Petreczky, Phys. Rev. D 70, 074505 (2004). (72, 059903(E) (2005))

  4. O. Kaczmarek, F. Zantow, Phys. Rev. D 71, 114510 (2005)

    ADS  Google Scholar 

  5. M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004). ((S. Datta, F. Karsch, P. Petreczky, and I. Wetzorke, Phys. Rev. D 69, 094507 (2004)))

  6. R. Morrin et al., in Proceedings of Science LAT2005 (2005), p. 176

  7. F. Karsch, D. Kharzeev, H. Satz, Phys. Lett. B 637, 75 (2006)

    ADS  CAS  Google Scholar 

  8. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

    ADS  MathSciNet  Google Scholar 

  9. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998)

    ADS  MathSciNet  CAS  Google Scholar 

  10. O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323, 183 (2000)

  11. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)

    ADS  MathSciNet  Google Scholar 

  12. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

    ADS  CAS  PubMed  Google Scholar 

  13. J.C. Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann. arXiv:1101.0618

  14. H. Liu, K. Rajagopal, U.A. Wiedemann, Phys. Rev. Lett. 98, 182301 (2007)

    ADS  PubMed  Google Scholar 

  15. J.M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998)

    ADS  MathSciNet  CAS  Google Scholar 

  16. S.-J. Rey, S. Theisen, J.-T. Yee, Nucl. Phys. B 527, 171 (1998)

    ADS  Google Scholar 

  17. A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, Phys. Lett. B 434, 36 (1998)

    ADS  CAS  Google Scholar 

  18. E. Caceres, M. Natsuume, T. Okamura, JHEP 0610, 011 (2006)

    ADS  Google Scholar 

  19. M. Natsuume, T. Okamura, JHEP 09, 039 (2007)

    ADS  Google Scholar 

  20. W.-S. Xu, D.F. Zeng, Nucl. Phys. B 890, 228 (2015)

    ADS  CAS  Google Scholar 

  21. S. Chakraborttya, T.K. Dey, JHEP 05, 094 (2016)

    ADS  Google Scholar 

  22. M. Chernicoff, J.A. Garcia, A. Guijosa, JHEP 09, 068 (2006)

    ADS  Google Scholar 

  23. C. Krishnan, JHEP 12, 019 (2008)

    ADS  Google Scholar 

  24. C. Athanasiou, H. Liu, K. Rajagopal, JHEP 05, 083 (2008)

    ADS  Google Scholar 

  25. S.J. Sina, Y. Zhou, JHEP 05, 044 (2009)

    ADS  Google Scholar 

  26. J. Sadeghi, S. Heshmatian, Int. J. Theor. Phys. 49, 1811 (2010)

    CAS  Google Scholar 

  27. A. Nata Atmaja, H. Abu Kassim, N. Yusof, Eur. Phys. J. C 75, 565 (2015)

  28. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 83, 035015 (2011)

    ADS  Google Scholar 

  29. K. Kajantie, T. Tahkokallio, J.T. Yee, JHEP 0701, 019 (2007)

    ADS  Google Scholar 

  30. P. Colangelo, F. Giannuzzi, S. Nicotri, Eur. Phys. J. C 72, 2096 (2012)

    ADS  Google Scholar 

  31. P. Colangelo, F. Giannuzzi, S. Nicotri, JHEP 05, 076 (2012)

    ADS  Google Scholar 

  32. X.R. Zhu, Z.Q. Zhang, Chin. Phys. C 44, 105105 (2020)

    ADS  CAS  Google Scholar 

  33. Y. Xiong, X. Tang, Z. Luo, Chin. Phys. C 43, 113103 (2019)

    ADS  CAS  Google Scholar 

  34. O. Andreev, Phys. Rev. D 81, 087901 (2010)

    ADS  Google Scholar 

  35. C. Park, D.Y. Gwak, B.H. Lee, Y. Ko, S. Shin, Phys. Rev. D 84, 046007 (2011)

    ADS  Google Scholar 

  36. C. Ewerz, T. Gasenzer, M. Karl, A. Samberg, JHEP 05, 070 (2015)

    ADS  Google Scholar 

  37. Z.Q. Zhang, X.R. Zhu, Phys. Lett. B 793, 200 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  38. X. Chen, S.Q. Feng, Y.F. Shi, Y. Zhong, Phys. Rev. D 97, 066015 (2018)

    ADS  CAS  Google Scholar 

  39. A. Saha, S. Gangopadhyay, Phys. Rev. D 101, 086022 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  40. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 88(11), 115011 (2013)

    ADS  Google Scholar 

  41. O. DeWolfe, S.S. Gubser, C. Rosen, Phys. Rev. D 83, 086005 (2011)

    ADS  Google Scholar 

  42. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006)

    ADS  Google Scholar 

  43. H. Liu, K. Rajagopal, Y. Shi, JHEP 0808, 048 (2008)

    ADS  Google Scholar 

  44. A. Stoffers, I. Zahed, Phys. Rev. D 83, 055016 (2011)

    ADS  Google Scholar 

  45. S. He, S.-Y. Wu, Y. Yang, P.-H. Yuan, JHEP 04, 093 (2013)

    ADS  Google Scholar 

  46. D.N. Li, M. Huang, JHEP 11, 088 (2013)

    ADS  Google Scholar 

  47. R. Rougemont, A. Ficnar, S. Finazzo, J. Noronha, JHEP 1604, 102 (2016)

    ADS  Google Scholar 

  48. R. Critelli, J. Noronha, J.N. Hostler, I. Portillo, C. Ratti, R. Rougemont, Phys. Rev. D 96, 096026 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under grant nos.12375140, 12035006 and the Ministry of Science and Technology under grant no. 2020YFE0202001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-qiang Zhang.

Additional information

Communicated by Giorgio Torrieri.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Wu, Pp. & Zhang, Zq. Screening length in a soft wall AdS/QCD model. Eur. Phys. J. A 60, 35 (2024). https://doi.org/10.1140/epja/s10050-024-01249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01249-y

Navigation