Skip to main content

Advertisement

Log in

Light quark energy loss in a soft-wall AdS/QCD model

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the energy loss of light quarks in a holographic QCD model with conformal invariance broken by a background dilaton. We perform the analysis within falling string and shooting string, respectively. It turns out that the two methods give the same result: the presence of confining scale and chemical potential tends to enhance the energy loss, in accord with previous findings of drag force and jet quenching parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

References

  1. E.V. Shuryak, Nucl. Phys. A 750, 64 (2005)

    Article  ADS  Google Scholar 

  2. M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  3. M. Connors, C. Nattrass, R. Reed, S. Salur, Rev. Mod. Phys. 90, 025005 (2018)

    Article  ADS  Google Scholar 

  4. G.Y. Qin, X.-N. Wang, Int. J. Mod. Phys. E 24(11), 1530014 (2015)

    Article  ADS  Google Scholar 

  5. E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004)

    Article  ADS  Google Scholar 

  6. K. Adcox et al., (PHENIX Collaboration). Nucl. Phys. A 757, 184 (2005)

  7. J. Adams et al., (STAR Collaboration). Nucl. Phys. A 757, 102 (2005)

  8. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Phys. Rept. 323, 183 (2000)

    Article  ADS  Google Scholar 

  11. J.C. Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, arXiv:1101.0618

  12. O. DeWolfe, S.S. Gubser, C. Rosen, D. Teaney, Prog. Part. Nucl. Phys. 75, 86 (2014)

    Article  ADS  Google Scholar 

  13. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, L.G. Yafe, JHEP 07, 013 (2006)

    Article  ADS  Google Scholar 

  14. S.S. Gubser, Phys. Rev. D 74, 126005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Liu, K. Rajagopal, U.A. Wiedemann, Phys. Rev. Lett. 97, 182301 (2006)

    Article  ADS  Google Scholar 

  16. H. Liu, K. Rajagopal, U.A. Wiedemann, JHEP 03, 066 (2007)

    Article  ADS  Google Scholar 

  17. S.S. Gubser, D.R. Gulotta, S.S. Pufu, F.D. Rocha, JEHP 10, 052 (2008)

    Google Scholar 

  18. P.M. Chesler, K. Jensen, A. Karch, Phys. Rev. D 79, 025021 (2009)

    Article  ADS  Google Scholar 

  19. P.M. Chesler, K. Jensen, A. Karch, L.G. Yaffe, Phys. Rev. D 79, 125015 (2009)

    Article  ADS  Google Scholar 

  20. P. Arnold, D. Vaman, JHEP 10, 099 (2010)

    Article  ADS  Google Scholar 

  21. P. Arnold, D. Vaman, JHEP 04, 027 (2011)

    Article  ADS  Google Scholar 

  22. A. Ficnar, S.S. Gubser, Phys. Rev. D 89, 026002 (2014)

    Article  ADS  Google Scholar 

  23. A. Ficnar, S.S. Gubser, M. Gyulassy, Phys. Lett. B 738, 464 (2014)

    Article  ADS  Google Scholar 

  24. K.B. Fadafan, R. Morad, Eur. Phys. J. C 78, 16 (2018)

    Article  ADS  Google Scholar 

  25. B. Muller, D.-L. Yang, Phys. Rev. D 87, 046004 (2013)

    Article  ADS  Google Scholar 

  26. R. Morad, W.A. Horowitz, JHEP 11, 017 (2014)

    Article  ADS  Google Scholar 

  27. R. Rougemont, A. Ficnar, S. Finazzo, J. Noronha, JHEP 04, 102 (2016)

    ADS  Google Scholar 

  28. Z.-Q. Zhang, Phys. Lett. B 793, 308 (2019)

    Article  ADS  Google Scholar 

  29. S. Heshmatian, R. Morad, M. Akbari, JHEP 03, 045 (2019)

    Article  ADS  Google Scholar 

  30. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik, I. Kirsch, Phys. Rev. D 69, 066007 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, JHEP 0405, 041 (2004)

    Article  ADS  Google Scholar 

  32. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

    Article  ADS  Google Scholar 

  33. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2005)

    Article  ADS  Google Scholar 

  34. J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)

    Article  ADS  Google Scholar 

  35. J. Polchinski, M.J. Strassler, JHEP 05, 012 (2003)

    Article  ADS  Google Scholar 

  36. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006)

    Article  ADS  Google Scholar 

  37. C. Csaki, M. Reece, JHEP 0705, 062 (2007)

    Article  ADS  Google Scholar 

  38. U. Gursoy, E. Kiritsis, JHEP 0802, 032 (2008)

    Article  ADS  Google Scholar 

  39. U. Gursoy, E. Kiritsis, F. Nitti, JHEP 0802, 019 (2008)

    Article  ADS  Google Scholar 

  40. U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, Nucl. Phys. B 820, 148 (2009)

    Article  ADS  Google Scholar 

  41. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 83, 035015 (2011)

    Article  ADS  Google Scholar 

  42. Y. Xiong, X. Tang, Z. Luo, Chin. Phys. C 43, 113103 (2019)

    Article  ADS  Google Scholar 

  43. X.R. Zhu, Z.-Q. Zhang, Chin. Phys. C 44, 105105 (2020)

    Article  ADS  Google Scholar 

  44. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60, 064018 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Cvetic et al., Nucl. Phys. B 558, 96 (1999)

    Article  ADS  Google Scholar 

  46. D.T. Son, A.O. Starinets, JHEP 03, 052 (2006)

    Article  ADS  Google Scholar 

  47. O. Andreev, V.I. Zakharov, Phys. Rev. D 74, 025023 (2006)

    Article  ADS  Google Scholar 

  48. H. Liu, K. Rajagopal, Y. Shi, JHEP 08, 048 (2008)

    Article  ADS  Google Scholar 

  49. E. Caceres, A. Kundu, D.L. Yang, JHEP 03, 073 (2014)

    Article  ADS  Google Scholar 

  50. D. Li, M. Huang, JHEP 11, 088 (2013)

    Article  ADS  Google Scholar 

  51. S. He, M. Huang, Q.S. Yan, Phys. Rev. D 83, 045034 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Zhejiang Provincial Natural Science Foundation of China No. LY19A050001 and the NSFC under Grant No. 12047568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-qiang Zhang.

Additional information

Communicated by Giorgio Torrieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhang, Zq. Light quark energy loss in a soft-wall AdS/QCD model. Eur. Phys. J. A 57, 96 (2021). https://doi.org/10.1140/epja/s10050-021-00418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00418-7

Navigation