Skip to main content
Log in

Multiconfigurational time-dependent density functional theory for atomic nuclei: technical and numerical aspects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The nuclear time-dependent density functional theory (TDDFT) is a tool of choice for describing various dynamical phenomena in atomic nuclei. In a recent study, we reported an extension of the framework – the multiconfigurational TDDFT (MC-TDDFT) model – that takes into account quantum fluctuations in the collective space by mixing several TDDFT trajectories. In this article, we focus on technical and numerical aspects of the model. We outline the properties of the time-dependent variational principle that is employed to obtain the equation of motion for the mixing function. Furthermore, we discuss evaluation of various ingredients of the equation of motion, including the Hamiltonian kernel, norm kernel, and kernels with explicit time derivatives. We detail the numerical methods for resolving the equation of motion and outline the major assumptions underpinning the model. A technical discussion is supplemented with numerical examples that consider collective quadrupole vibrations in \(^{40}\)Ca, particularly focusing on the issues of convergence, treatment of linearly dependent bases, energy conservation, and prescriptions for the density-dependent part of an interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in the published article.]

Notes

  1. In [48], the model based on (1) was branded TDGCM since it represented a time-dependent extension of the Hill-Wheeler-Griffin’s GCM framework [57, 58]. The same naming convention was adopted in Refs. [50] and [55, 56]. However, over the past decade the term TDGCM became largely associated to adiabatic fission models employing time-independent generating states [38, 39]. Therefore, to avoid any confusion and underline the distinction, we use MC-TDDFT to refer to models such as the present one that mixes states which are not necessarily adiabatic.

  2. Since we are not dealing with a genuine Hamiltonian operator but with a density-dependent effective interaction, the “Hamiltonian kernel” is somewhat of a misnomer. Consequences of this distinction were thoroughly discussed in the literature [69,70,71,72]. The main practical consequence for our calculations is that it is necessary to introduce a prescription for the density-dependent component of an effective interaction, as explained in Sect. 3.2.3.

  3. Several numerical tests can be performed to verify the procedure. To start with, thus obtained \(\dot{{\mathcal {N}}}^{1/2}(t)\) matrix should verify Eq. (59). Moreover, it should reduce to the usual expression when all the eigenvalues are non-zero. As a third test, when plugged into Eq. (27), it should lead to a unitary time evolution. Finally, when two identical TDDFT states are mixed, the evolution of the MC-TDDFT state should reduce to the evolution of the basis state.

References

  1. C. Simenel, B. Avez, D. Lacroix, Quantum many-body dynamics: applications to nuclear reactions (VDM Verlag, Riga, 2010)

    Google Scholar 

  2. D. Lacroix, S. Ayik, P. Chomaz, Nuclear collective vibrations in extended mean-field theory. Prog. Part. Nucl. Phys. 52, 497–563 (2004). https://doi.org/10.1016/j.ppnp.2004.02.002

    Article  ADS  CAS  Google Scholar 

  3. C. Simenel, Nuclear quantum many-body dynamics. Eur. Phys. J. A 48, 152 (2012). https://doi.org/10.1140/epja/i2012-12152-0

    Article  ADS  CAS  Google Scholar 

  4. A. Bulgac, Time-dependent density functional theory and the real-time dynamics of Fermi superfluids. Annu. Rev. Nucl. Part. Sci. 63, 97–121 (2013). https://doi.org/10.1146/annurev-nucl-102212-170631

    Article  ADS  CAS  Google Scholar 

  5. T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, K. Yabana, Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys. 88, 045004 (2016). https://doi.org/10.1103/RevModPhys.88.045004

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Stevenson, M. Barton, Low-energy heavy-ion reactions and the Skyrme effective interaction. Prog. Part. Nucl. Phys. 104, 142–164 (2019). https://doi.org/10.1016/j.ppnp.2018.09.002

    Article  ADS  CAS  Google Scholar 

  7. A. Bulgac, M. Forbes, “Time-dependent density functional theory” (Chapter 4) in “Energy Density Functional Methods for Atomic Nuclei” (Ed. Nicolas Schunck). IOP Publishing Ltd (2019)

  8. M. Casida, M. Huix-Rotllant, Progress in time-dependent density-functional theory. Annu. Rev. Phys. Chem. 63, 287–323 (2012). https://doi.org/10.1146/annurev-physchem-032511-143803

    Article  ADS  CAS  PubMed  Google Scholar 

  9. M.A.L. Marques, N.T. Maitra, F. Nogueira, E.K.U. Gross, A. Rubio (eds.), Fundamentals of time-dependent density functional theory (Springer, Berlin, 2012)

    Google Scholar 

  10. J.-P. Blaizot, G. Ripka, Quantum theory of finite systems, vol. 3 (MIT Press, Cambridge, 1986)

    Google Scholar 

  11. P. Ring, P. Schuck, The nuclear many-body problem (Springer, Berlin, 2004)

    Google Scholar 

  12. N.N. Bogolyubov, J. Phys. (URSS) 10, 256 (1946)

    Google Scholar 

  13. H. Born, H.S. Green, A general kinetic theory of liquids I. The molecular distribution functions. Proc. R. Soc. A 188, 10–18 (1946). https://doi.org/10.1098/rspa.1946.0093

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. J.G. Kirkwood, The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14, 180–201 (1946). https://doi.org/10.1063/1.1724117

    Article  ADS  CAS  Google Scholar 

  15. M. Bonitz, Quantum kinetic theory (Springer, Berlin, 2016)

    Book  Google Scholar 

  16. F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, Propagating two-particle reduced density matrices without wave functions. Phys. Rev. A 91, 023412 (2015). https://doi.org/10.1103/PhysRevA.91.023412

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, High-harmonic spectra from time-dependent two-particle reduced-density-matrix theory. Phys. Rev. A 95, 033414 (2017). https://doi.org/10.1103/PhysRevA.95.033414

    Article  ADS  Google Scholar 

  18. K. Dietrich, J.-J. Niez, J.-F. Berger, Microscopic transport theory of nuclear processes. Nucl. Phys. A 832, 249–288 (2010). https://doi.org/10.1016/j.nuclphysa.2009.11.004

    Article  ADS  CAS  Google Scholar 

  19. R. Balian, M. Vénéroni, Fluctuations in a time-dependent mean-field approach. Phys. Lett. B 136, 301–306 (1984). https://doi.org/10.1016/0370-2693(84)92008-2

    Article  ADS  Google Scholar 

  20. R. Balian, M. Vénéroni, Correlations and fluctuations in static and dynamic mean-field approaches. Ann. Phys. (N. Y.) 216, 351–430 (1992). https://doi.org/10.1016/0003-4916(92)90181-K

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Simenel, Particle-number fluctuations and correlations in transfer reactions obtained using the Balian–Vénéroni variational principle. Phys. Rev. Lett. 106, 112502 (2011). https://doi.org/10.1103/PhysRevLett.106.112502

    Article  ADS  CAS  PubMed  Google Scholar 

  22. P.-G. Reinhard, E. Suraud, Stochastic TDHF and large fluctuations. Nucl. Phys. A 545, 59–69 (1992). https://doi.org/10.1016/0375-9474(92)90446-Q

    Article  ADS  Google Scholar 

  23. P.-G. Reinhard, E. Suraud, Stochastic TDHF and the Boltzman–Langevin equation. Ann. Phys. (N. Y.) 216, 98–121 (1992). https://doi.org/10.1016/0003-4916(52)90043-2

    Article  ADS  MathSciNet  Google Scholar 

  24. D. Lacroix, Stochastic mean-field dynamics for fermions in the weak-coupling limit. Phys. Rev. C 73, 044311 (2006). https://doi.org/10.1103/PhysRevC.73.044311

    Article  ADS  CAS  Google Scholar 

  25. S. Ayik, A stochastic mean-field approach for nuclear dynamics. Phys. Lett. B 658, 174–179 (2008). https://doi.org/10.1016/j.physletb.2007.09.072

    Article  ADS  MathSciNet  CAS  Google Scholar 

  26. D. Lacroix, S. Ayik, Stochastic quantum dynamics beyond mean field. Eur. Phys. J. A 50, 95 (2014). https://doi.org/10.1140/epja/i2014-14095-8

    Article  ADS  CAS  Google Scholar 

  27. O. Juillet, P. Chomaz, Exact stochastic mean-field approach to the fermionic many-body problem. Phys. Rev. Lett. 88, 142503 (2002). https://doi.org/10.1103/PhysRevLett.88.142503

    Article  ADS  CAS  PubMed  Google Scholar 

  28. D. Lacroix, Exact and approximate many-body dynamics with stochastic one-body density matrix evolution. Phys. Rev. C 71, 064322 (2005). https://doi.org/10.1103/PhysRevC.71.064322

    Article  ADS  CAS  Google Scholar 

  29. Y. Tanimura, D. Lacroix, S. Ayik, Microscopic phase-space exploration modeling of \(^{258}{\rm Fm} \) spontaneous fission. Phys. Rev. Lett. 118, 152501 (2017). https://doi.org/10.1103/PhysRevLett.118.152501

    Article  ADS  PubMed  Google Scholar 

  30. D. Regnier, D. Lacroix, G. Scamps, Y. Hashimoto, Microscopic description of pair transfer between two superfluid Fermi systems: combining phase-space averaging and combinatorial techniques. Phys. Rev. C 97, 034627 (2018). https://doi.org/10.1103/PhysRevC.97.034627

    Article  ADS  CAS  Google Scholar 

  31. D. Regnier, D. Lacroix, Microscopic description of pair transfer between two superfluid Fermi systems. II. Quantum mixing of time-dependent Hartree-Fock-Bogolyubov trajectories. Phys. Rev. C 99, 064615 (2019). https://doi.org/10.1103/PhysRevC.99.064615

    Article  ADS  CAS  Google Scholar 

  32. M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003). https://doi.org/10.1103/RevModPhys.75.121

    Article  ADS  CAS  Google Scholar 

  33. J.L. Egido, State-of-the-art of beyond mean field theories with nuclear density functionals. Phys. Scr. 91, 073003 (2016). https://doi.org/10.1088/0031-8949/91/7/073003

    Article  ADS  CAS  Google Scholar 

  34. L.M. Robledo, T.R. Rodríguez, R.R. Rodríguez-Guzmán, Mean field and beyond description of nuclear structure with the Gogny force: a review. J. Phys. G: Nucl. Part. Phys. 46, 013001 (2018). https://doi.org/10.1088/1361-6471/aadebd

    Article  ADS  CAS  Google Scholar 

  35. T. Nikšić, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: mean-field and beyond. Prog. Part. Nucl. Phys. 66, 519–548 (2011). https://doi.org/10.1016/j.ppnp.2011.01.055

    Article  ADS  CAS  Google Scholar 

  36. J.-F. Berger, M. Girod, D. Gogny, Microscopic analysis of collective dynamics in low energy fission. Nucl. Phys. A 428, 23–36 (1984). https://doi.org/10.1016/0375-9474(84)90240-9

    Article  ADS  Google Scholar 

  37. H. Goutte, P. Casoli, J.-F. Berger, Mass and kinetic energy distributions of fission fragments using the time dependent generator coordinate method. Nucl. Phys. A 734, 217–220 (2004). https://doi.org/10.1016/j.nuclphysa.2004.01.038

    Article  ADS  CAS  Google Scholar 

  38. W. Younes, D.M. Gogny, J.-F. Berger, A Microscopic theory of fission dynamics based on the generator coordinate method (Springer, Cham, 2019)

    Book  Google Scholar 

  39. M. Verriere, D. Regnier, The time-dependent generator coordinate method in nuclear physics. Front. Phys. 8, 233 (2020). https://doi.org/10.3389/fphy.2020.00233

    Article  Google Scholar 

  40. D. Brink, A. Weiguny, The generator coordinate theory of collective motion. Nucl. Phys. A 120, 59–93 (1968). https://doi.org/10.1016/0375-9474(68)90059-6

    Article  ADS  Google Scholar 

  41. N. Onishi, T. Une, Local gaussian approximation in the generator coordinate method. Prog. Theor. Phys. 53, 504–515 (1975). https://doi.org/10.1143/PTP.53.504

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Regnier, N. Dubray, N. Schunck, M. Verrière, Fission fragment charge and mass distributions in \(^{239}\rm Pu (n, f)\) in the adiabatic nuclear energy density functional theory. Phys. Rev. C 93, 054611 (2016). https://doi.org/10.1103/PhysRevC.93.054611

    Article  ADS  CAS  Google Scholar 

  43. N. Schunck, L.M. Robledo, Microscopic theory of nuclear fission: a review. Rep. Prog. Phys. 79, 116301 (2016). https://doi.org/10.1088/0034-4885/79/11/116301

    Article  ADS  CAS  PubMed  Google Scholar 

  44. M. Bender, R. Bernard, G. Bertsch, S. Chiba, J. Dobaczewski, N. Dubray, S.A. Giuliani, K. Hagino, D. Lacroix, Z. Li, P. Magierski, J. Maruhn, W. Nazarewicz, J. Pei, S. Péru, N. Pillet, J. Randrup, D. Regnier, P.-G. Reinhard, L.M. Robledo, W. Ryssens, J. Sadhukhan, G. Scamps, N. Schunck, C. Simenel, J. Skalski, I. Stetcu, P. Stevenson, S. Umar, M. Verriere, D. Vretenar, M. Warda, S. Åberg, Future of nuclear fission theory. J. Phys. G: Nucl. Part. Phys. 47, 113002 (2020). https://doi.org/10.1088/1361-6471/abab4f

    Article  CAS  Google Scholar 

  45. J. Zhao, T. Nikšić, D. Vretenar, Time-dependent generator coordinate method study of fission: dissipation effects. Phys. Rev. C 105, 054604 (2022). https://doi.org/10.1103/PhysRevC.105.054604

    Article  ADS  CAS  Google Scholar 

  46. J. Zhao, T. Nikšić, D. Vretenar, Time-dependent generator coordinate method study of fission. II. Total kinetic energy distribution. Phys. Rev. C 106, 054609 (2022). https://doi.org/10.1103/PhysRevC.106.054609

    Article  ADS  CAS  Google Scholar 

  47. R. Bernard, H. Goutte, D. Gogny, W. Younes, Microscopic and nonadiabatic Schrödinger equation derived from the generator coordinate method based on zero- and two-quasiparticle states. Phys. Rev. C 84, 044308 (2011). https://doi.org/10.1103/PhysRevC.84.044308

    Article  ADS  CAS  Google Scholar 

  48. P.-G. Reinhard, R.Y. Cusson, K. Goeke, Time evolution of coherent ground-state correlations and the TDHF approach. Nucl. Phys. A 398, 141–188 (1983). https://doi.org/10.1016/0375-9474(83)90653-X

    Article  ADS  Google Scholar 

  49. P.G. Reinhard, K. Goeke, The generator coordinate method and quantised collective motion in nuclear systems. Rep. Prog. Phys. 50, 1 (1987). https://doi.org/10.1088/0034-4885/50/1/001

    Article  ADS  CAS  Google Scholar 

  50. N. Hasegawa, K. Hagino, Y. Tanimura, Time-dependent generator coordinate method for many-particle tunneling. Phys. Lett. B 808, 135693 (2020). https://doi.org/10.1016/j.physletb.2020.135693

    Article  MathSciNet  CAS  Google Scholar 

  51. A. Ono, Phase-space consideration on barrier transmission in a time-dependent variational approach with superposed wave packets. Phys. Lett. B 826, 136931 (2022). https://doi.org/10.1016/j.physletb.2022.136931

    Article  MathSciNet  CAS  Google Scholar 

  52. N. Hasegawa, K. Hagino, Y. Tanimura, Comment on“Phase-space consideration on barrier transmission in a time-dependent variational approach with superposed wave packets” (2022). arXiv:2202.00513

  53. A. Ono, Reply to Comment on “Phase-space consideration on barrier transmission in a time-dependent variational approach with superposed wave packets” (2022). arXiv:2202.06454

  54. P. Marević, D. Regnier, D. Lacroix, Quantum fluctuations induce collective multiphonons in finite Fermi liquids. Phys. Rev. C 108, 014620 (2023). https://doi.org/10.1103/PhysRevC.108.014620

    Article  ADS  Google Scholar 

  55. B. Li, D. Vretenar, T. Nikšić, P.W. Zhao, J. Meng, Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion. Phys. Rev. C 108, 014321 (2023). https://doi.org/10.1103/PhysRevC.108.014321

    Article  ADS  CAS  Google Scholar 

  56. B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng, Generalized time-dependent generator coordinate method for small and large amplitude collective motion (ii): pairing correlations and fission (2023). arXiv:2309.12564

  57. D.L. Hill, J.A. Wheeler, Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102–1145 (1953). https://doi.org/10.1103/PhysRev.89.1102

    Article  ADS  CAS  Google Scholar 

  58. J.J. Griffin, J.A. Wheeler, Collective motions in nuclei by the method of generator coordinates. Phys. Rev. 108, 311–327 (1957). https://doi.org/10.1103/PhysRev.108.311

    Article  ADS  CAS  Google Scholar 

  59. J.A. Sheikh, J. Dobaczewski, P. Ring, L.M. Robledo, C. Yannouelas, Symmetry restoration in mean-field approaches. J. Phys. G: Nucl. Part. Phys. 48, 123001 (2019). https://doi.org/10.1088/1361-6471/ac288a

    Article  ADS  CAS  Google Scholar 

  60. J. Sadhukhan, J. Dobaczewski, W. Nazarewicz, J.A. Sheikh, A. Baran, Pairing-induced speedup of nuclear spontaneous fission. Phys. Rev. C 90, 061304 (2014). https://doi.org/10.1103/PhysRevC.90.061304

    Article  ADS  CAS  Google Scholar 

  61. J. Zhao, B.-N. Lu, T. Nikšić, D. Vretenar, S.-G. Zhou, Multidimensionally-constrained relativistic mean-field study of spontaneous fission: coupling between shape and pairing degrees of freedom. Phys. Rev. C 93, 044315 (2016). https://doi.org/10.1103/PhysRevC.93.044315

    Article  ADS  CAS  Google Scholar 

  62. R. Bernard, S.A. Giuliani, L.M. Robledo, Role of dynamic pairing correlations in fission dynamics. Phys. Rev. C 99, 064301 (2019). https://doi.org/10.1103/PhysRevC.99.064301

    Article  ADS  CAS  Google Scholar 

  63. H.-D. Meyer, F. Gatti, G. A. Worth, Multidimensional quantum dynamics: MCTDH theory and applications. Wiley (2009)

  64. X. Yuan, S. Endo, Q. Zhao, Y. Li, S.C. Benjamin, Theory of variational quantum simulation. Quantum 3, 191 (2019). https://doi.org/10.22331/q-2019-10-07-191

    Article  Google Scholar 

  65. Y. Saad, Iterative methods for sparse linear systems: second edition, SIAM (2003)

  66. P.-O. Löwdin, Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97, 1474–1489 (1955). https://doi.org/10.1103/PhysRev.97.1474

    Article  ADS  MathSciNet  Google Scholar 

  67. F. Plasser, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. González, Efficient and flexible computation of Many–Electron wave function overlaps. J. Chem. Theory Comput. 12, 1207–1219 (2016). https://doi.org/10.1021/acs.jctc.5b01148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. R. Balian, E. Brezin, Nonunitary Bogoliubov transformations and extension of Wick’s theorem. Il Nuovo Cimento B 64, 37–55 (1969). https://doi.org/10.1007/BF02710281

    Article  ADS  MathSciNet  Google Scholar 

  69. M. Anguiano, J. Egido, L. Robledo, Particle number projection with effective forces. Nucl. Phys. A 696, 467–493 (2001). https://doi.org/10.1016/S0375-9474(01)01219-2

    Article  ADS  Google Scholar 

  70. J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, P.-G. Reinhard, Particle-number projection and the density functional theory. Phys. Rev. C 76, 054315 (2007). https://doi.org/10.1103/PhysRevC.76.054315

    Article  ADS  CAS  Google Scholar 

  71. T. Duguet, M. Bender, K. Bennaceur, D. Lacroix, T. Lesinski, Particle-number restoration within the energy density functional formalism: nonviability of terms depending on noninteger powers of the density matrices. Phys. Rev. C 79, 044320 (2009). https://doi.org/10.1103/PhysRevC.79.044320

    Article  ADS  CAS  Google Scholar 

  72. L.M. Robledo, Remarks on the use of projected densities in the density-dependent part of Skyrme or Gogny functionals. J. Phys. G: Nucl. Part. Phys. 37, 064020 (2010). https://doi.org/10.1088/0954-3899/37/6/064020

    Article  ADS  CAS  Google Scholar 

  73. P. Bonche, H. Flocard, P. Heenen, Self-consistent calculation of nuclear rotations: the complete yrast line of \(^{24}\)Mg. Nucl. Phys. A 467, 115–135 (1987). https://doi.org/10.1016/0375-9474(87)90331-9

    Article  ADS  Google Scholar 

  74. T. Duguet, P. Bonche, Density dependence of two-body interactions for beyond-mean-field calculations. Phys. Rev. C 67, 054308 (2003). https://doi.org/10.1103/PhysRevC.67.054308

    Article  ADS  CAS  Google Scholar 

  75. R. Bhatia, Matrix analysis (Springer, New York, 1997)

    Book  Google Scholar 

  76. O.C. Zienkiewicz, R.L. Taylor, The finite element method: its basis and fundamentals, 7th edn. (Butterworth-Heinemann, Amsterdam, 2013)

    Google Scholar 

  77. R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J.C.V. Dobrev, Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, S. Zampini, MFEM: a modular finite element methods library. Comput. Math. with Appl. 81, 42–74 (2021). https://doi.org/10.1016/j.camwa.2020.06.009

    Article  MathSciNet  Google Scholar 

  78. K.-H. Kim, T. Otsuka, P. Bonche, Three-dimensional TDHF calculations for reactions of unstable nuclei. J. Phys. G: Nucl. Part. Phys. 23, 1267 (1997). https://doi.org/10.1088/0954-3899/23/10/014

    Article  ADS  CAS  Google Scholar 

  79. P. Marević, N. Schunck, E. Ney, R. Navarro Pérez, M. Verriere, J. O’Neal, Axially-deformed solution of the Skyrme–Hartree–Fock–Bogoliubov equations using the transformed harmonic oscillator basis (IV) HFBTHO (v4.0): A new version of the program. Comput. Phys. Commun. 276, 108367 (2022). https://doi.org/10.1016/j.cpc.2022.108367

    Article  MathSciNet  CAS  Google Scholar 

  80. G. Scamps, D. Lacroix, Systematics of isovector and isoscalar giant quadrupole resonances in normal and superfluid spherical nuclei. Phys. Rev. C 88, 044310 (2013). https://doi.org/10.1103/PhysRevC.88.044310

    Article  ADS  CAS  Google Scholar 

  81. B. Schuetrumpf, P.G. Reinhard, P.D. Stevenson, A.S. Umar, J.A. Maruhn, The TDHF code Sky3D version 1.1. Comput. Phys. Commun. 229, 211–213 (2018). https://doi.org/10.1016/j.cpc.2018.03.012

    Article  ADS  CAS  Google Scholar 

  82. S. Jin, K.J. Roche, I. Stetcu, I. Abdurrahman, A. Bulgac, The LISE package: solvers for static and time-dependent superfluid local density approximation equations in three dimensions. Comput. Phys. Commun. 269, 108130 (2021). https://doi.org/10.1016/j.cpc.2021.108130

    Article  MathSciNet  CAS  Google Scholar 

  83. P. Chomaz, N. Frascaria, Multiple phonon excitation in nuclei: experimental results and theoretical descriptions. Phys. Rep. 252, 275–405 (1995). https://doi.org/10.1016/0370-1573(94)00079-I

    Article  ADS  CAS  Google Scholar 

  84. T. Aumann, P.F. Bortignon, H. Emling, Multiphonon giant resonances in nuclei. Annu. Rev. Nucl. Part. Sci. 48, 351–399 (1998). https://doi.org/10.1146/annurev.nucl.48.1.351

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by CNRS through the AIQI-IN2P3 funding. P. M. would like to express his gratitude to CEA and IJCLab for their warm hospitality during work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Marević.

Additional information

Communicated by Takashi Nakatsukasa.

Appendices

Appendix A: Local transition densities

The spin expansion of the non-local transition density [Eq. (42)] for isospin \(\tau \) reads

$$\begin{aligned} \begin{aligned} \rho _{\varvec{q}\varvec{q'}}^{(\tau )}(\varvec{r}\sigma ,\varvec{r'}\sigma ';t)&= \frac{1}{2}\rho _{\varvec{q}\varvec{q'}}^{(\tau )}(\varvec{r},\varvec{r'};t) \delta _{\sigma \sigma '} \\&+ \frac{1}{2} \sum _\mu {\langle {\sigma |{\hat{\sigma }}_\mu |\sigma '}\rangle }s_{\varvec{q}\varvec{q'}, \mu }^{(\tau )} (\varvec{r},\varvec{r'};t), \end{aligned} \end{aligned}$$
(A.1)

where \(\rho _{\varvec{q}\varvec{q'}}^{(\tau )}(\varvec{r},\varvec{r'};t)\) is the non-local one-body transition particle density,

$$\begin{aligned} \rho _{\varvec{q}\varvec{q'}}^{(\tau )}(\varvec{r},\varvec{r'};t) = \sum _\sigma \rho _{\varvec{q}\varvec{q'}}^{(\tau )}(\varvec{r}\sigma ,\varvec{r'}\sigma ;t), \end{aligned}$$
(A.2)

\(s_{\varvec{q}\varvec{q'}, \mu }^{(\tau )} (\varvec{r},\varvec{r'};t)\) is the \(\mu \)-th component of the non-local one-body transition spin density,

$$\begin{aligned} s_{\varvec{q}\varvec{q'}, \mu }^{(\tau )} (\varvec{r},\varvec{r'};t) = \sum _{\sigma \sigma '} \rho _{\varvec{q}\varvec{q'}}^{(\tau )}(\varvec{r}\sigma ,\varvec{r'}\sigma ';t) {\langle {\sigma '|{\hat{\sigma }}_\mu | \sigma }\rangle }, \end{aligned}$$
(A.3)

and \({\hat{\sigma }}_\mu \) are the Pauli operators. The local variants of the particle density \(\rho _{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r};t)\), spin density \(\varvec{s}_{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r};t)\), kinetic density \(\tau _{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r};t)\), current density \(\varvec{j}_{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r};t)\), spin-current pseudotensor density \(J_{\varvec{q} \varvec{q'}, \mu \nu }^{(\tau )}(\varvec{r};t)\), and spin-orbit current vector density \(\mathrm{{\varvec{J}}}_{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r};t)\) read

$$\begin{aligned} \rho _{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r};t)&= \rho _{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r}, \varvec{r};t), \end{aligned}$$
(A.4a)
$$\begin{aligned} s_{\varvec{q} \varvec{q'},\mu }^{(\tau )}(\varvec{r};t)&= s_{\varvec{q} \varvec{q'},\mu }^{(\tau )}(\varvec{r}, \varvec{r};t), \end{aligned}$$
(A.4b)
$$\begin{aligned} \tau _{\varvec{q} \varvec{q'}}^{(\tau )}(\varvec{r};t)&= \nabla \cdot \nabla ' \rho _{\varvec{q} \varvec{q'}}^{(\tau )} (\varvec{r},\varvec{r'};t)\vert _{\varvec{r'}=\varvec{r}}, \end{aligned}$$
(A.4c)
$$\begin{aligned} j_{\varvec{q} \varvec{q'}, \mu }^{(\tau )}(\varvec{r};t)&= \frac{1}{2i}(\nabla _\mu - \nabla '_\mu )\rho _{\varvec{q} \varvec{q'}}^{(\tau )} (\varvec{r},\varvec{r'};t)\vert _{\varvec{r'}=\varvec{r}}, \end{aligned}$$
(A.4d)
$$\begin{aligned} J_{\varvec{q} \varvec{q'},\mu \nu }^{(\tau )}(\varvec{r};t)&= \frac{1}{2i}(\nabla _\mu - \nabla '_\mu ) s_{\varvec{q} \varvec{q'},\nu }^{(\tau )}(\varvec{r},\varvec{r'};t)\vert _{\varvec{r'}=\varvec{r}}, \end{aligned}$$
(A.4e)
$$\begin{aligned} \mathrm{{J}}_{\varvec{q} \varvec{q'}, \lambda }^{(\tau )}(\varvec{r};t)&= \sum _{\mu \nu } \epsilon _{\lambda \mu \nu } J_{\varvec{q} \varvec{q'},\mu \nu }^{(\tau )}(\varvec{r};t). \end{aligned}$$
(A.4f)

In the following paragraph, the explicit dependence on time and isospin is omitted for compactness.

For Slater generating states, the coordinate space representation of the non-local transition density (for either neutrons or protons) can be written as

$$\begin{aligned} \rho _{\varvec{q} \varvec{q'}}(\varvec{r}\sigma ,\varvec{r'}\sigma ') = \sum _{kl}\varphi _k^{\varvec{q'}}(\varvec{r}\sigma ) \Big [M_{\varvec{q} \varvec{q'}}^{-1}\Big ]_{kl}\varphi _l^{\varvec{q}*} (\varvec{r'}\sigma '), \end{aligned}$$
(A.5)

where \(\Big [M_{\varvec{q} \varvec{q'}}^{-1}(t)\Big ]_{kl}\) are (generally complex) elements of the inverted matrix of single-particle overlaps [Eq. (37)]. Given the decomposition (33), the local transition particle density reads

$$\begin{aligned} \rho _{\varvec{q}\varvec{q'}}(\varvec{r}) = \sum _{kl} \Big [M_{\varvec{q}\varvec{q'}}^{-1} \Big ]_{kl} \Big [ \rho _{\varvec{q}\varvec{q'}}^{R}(\varvec{r})+i\rho _{\varvec{q}\varvec{q'}}^{I}(\varvec{r}) \Big ]_{kl} \end{aligned}$$
(A.6)

with

$$\begin{aligned} \Big [\rho _{\varvec{q}\varvec{q'}}^{R}(\varvec{r})\Big ]_{kl}&= \sum _{\alpha } \varphi _{k,\alpha }^{\varvec{q'}} (\varvec{r}) \varphi _{l,\alpha }^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.7a)
$$\begin{aligned} \Big [\rho _{\varvec{q}\varvec{q'}}^{I}(\varvec{r})\Big ]_{kl}&= \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) -\varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) \nonumber \\ {}&\quad +\varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) -\varphi _{k,2}^{\varvec{q'}} (\varvec{r}) \varphi _{l,3}^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.7b)

for \(\alpha = 0, 1, 2, 3\). Similarly, the local transition kinetic density reads

$$\begin{aligned} \tau _{\varvec{q}\varvec{q'}}(\varvec{r}) = \sum _{kl} \Big [M_{\varvec{q}\varvec{q'}}^{-1}\Big ]_{kl} \Big [\tau _{\varvec{q}\varvec{q'}}^{R}(\varvec{r})+i\tau _{\varvec{q}\varvec{q'}}^{I}(\varvec{r})\Big ]_{kl}, \end{aligned}$$
(A.8)

with

$$\begin{aligned} \Big [\tau _{\varvec{q}\varvec{q'}}^{R}(\varvec{r})\Big ]_{kl}&= \sum _{\alpha } \big (\nabla \varphi _{k,\alpha }^{\varvec{q'}}(\varvec{r})\big )\big (\nabla \varphi _{l,\alpha }^{\varvec{q}}(\varvec{r})\big ), \end{aligned}$$
(A.9a)
$$\begin{aligned} \Big [\tau _{\varvec{q}\varvec{q'}}^{I}(\varvec{r})\Big ]_{kl}&= \big (\nabla \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big ) \big (\nabla \varphi _{l,0}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\ {}&\quad - \big (\nabla \varphi _{k,0}^{\varvec{q'}}(\varvec{r})\big )\big (\nabla \varphi _{l,1}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad + \big (\nabla \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big ) \big (\nabla \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \big (\nabla \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\big )\big (\nabla \varphi _{l,3}^{\varvec{q}}(\varvec{r})\big ), \end{aligned}$$
(A.9b)

with

$$\begin{aligned} \big (\nabla \varphi _{k,\alpha }^{\varvec{q'}}(\varvec{r})\big )\big (\nabla \varphi _{l,\beta }^{\varvec{q}}(\varvec{r})\big ) = \sum _{\mu }\big (\partial _\mu \varphi _{k,\alpha }^{\varvec{q'}}(\varvec{r})\big ) \big (\partial _\mu \varphi _{l,\beta }^{\varvec{q}}(\varvec{r})\big ) \nonumber \\ \end{aligned}$$
(A.10)

and \(\mu = x, y, z\). Furthermore, the \(\mu \)-th component of the local transition current density reads

$$\begin{aligned} j_{\varvec{q}\varvec{q'}}^{\mu }(\varvec{r}) = \frac{1}{2}\sum _{kl}\Big [M_{\varvec{q}\varvec{q'}}^{-1}\Big ]_{kl} \Big [j_{\varvec{q}\varvec{q'}}^{\mu ,R}(\varvec{r})+ij_{\varvec{q} \varvec{q'}}^{\mu ,I}(\varvec{r})\Big ]_{kl}, \end{aligned}$$
(A.11)

with

$$\begin{aligned} \Big [j_{\varvec{q}\varvec{q'}}^{\mu ,R}(\varvec{r})\Big ]_{kl}&= \big (\partial _\mu \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) -\big (\partial _\mu \varphi _{k,0}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \big (\partial _\mu \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \big (\partial _\mu \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad - \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big (\partial _\mu \varphi _{l,0}^{\varvec{q}}(\varvec{r})\big ) + \varphi _{k,0}^{\varvec{q'}}(\varvec{r})\big (\partial _\mu \varphi _{l,1}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big (\partial _\mu \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ) + \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\big (\partial _\mu \varphi _{l,3}^{\varvec{q}}(\varvec{r})\big ), \end{aligned}$$
(A.12a)
$$\begin{aligned} \Big [j_{\varvec{q}\varvec{q'}}^{\mu ,I}(\varvec{r})\Big ]_{kl}&= \sum _{\alpha } \varphi _{k,\alpha }^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,\alpha }^{\varvec{q}} (\varvec{r})\big ) \nonumber \\&\quad - \sum _{\alpha }\big (\partial _\mu \varphi _{k,\alpha }^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,\alpha }^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.12b)

The components of the local transition spin density then read

$$\begin{aligned} s_{\varvec{q}\varvec{q'}}^{\mu }(\varvec{r}) = \sum _{kl} \Big [M_{\varvec{q}\varvec{q'}}^{-1}\Big ]_{kl} \Big [s_{\varvec{q}\varvec{q'}}^{\mu ,R}(\varvec{r}) +is_{\varvec{q}\varvec{q'}}^{\mu ,I}(\varvec{r})\Big ]_{kl}, \end{aligned}$$
(A.13)

with

$$\begin{aligned} \Big [s_{\varvec{q}\varvec{q'}}^{x,R}(\varvec{r})\Big ]_{kl}&= \varphi _{k,0}^{\varvec{q'}}(\varvec{r})\varphi _{l,2}^{\varvec{q}}(\varvec{r}) + \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\varphi _{l,0}^{\varvec{q}}(\varvec{r}) + \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \varphi _{l,1}^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.14a)
$$\begin{aligned} \Big [s_{\varvec{q}\varvec{q'}}^{x,I}(\varvec{r})\Big ]_{kl}&= \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\varphi _{l,0}^{\varvec{q}}(\varvec{r}) - \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \varphi _{l,3}^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.14b)
$$\begin{aligned} \Big [s_{\varvec{q}\varvec{q'}}^{y,R}(\varvec{r})\Big ]_{kl}&= \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) + \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad - \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \varphi _{l,1}^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.14c)
$$\begin{aligned} \Big [s_{\varvec{q}\varvec{q'}}^{y,I}(\varvec{r})\Big ]_{kl}&= \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) - \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \varphi _{l,1}^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.14d)
$$\begin{aligned} \Big [s_{\varvec{q}\varvec{q'}}^{z,R}(\varvec{r})\Big ]_{kl}&= \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) + \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad - \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \varphi _{l,3}^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.14e)
$$\begin{aligned} \Big [s_{\varvec{q}\varvec{q'}}^{z,I}(\varvec{r})\Big ]_{kl}&= \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) - \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\varphi _{l,3}^{\varvec{q}}(\varvec{r}) - \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \varphi _{l,2}^{\varvec{q}}(\varvec{r}). \end{aligned}$$
(A.14f)

Finally, the components of the spin-current pseudotensor density read

$$\begin{aligned} J_{\varvec{q}\varvec{q'}}^{\mu \nu }(\varvec{r}) = \frac{1}{2} \sum _{kl}\Big [M_{\varvec{q}\varvec{q'}}^{-1}\Big ]_{kl} \Big [J_{\varvec{q}\varvec{q'}}^{\mu \nu , R}(\varvec{r}) +iJ_{\varvec{q}\varvec{q'}}^{\mu \nu , I}(\varvec{r})\Big ]_{kl} \nonumber \\ \end{aligned}$$
(A.15)

with

$$\begin{aligned} \Big [J_{\varvec{q}\varvec{q'}}^{\mu x, R}(\varvec{r})\Big ]_{kl}&= \big (\partial _\mu \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big (\partial _\mu \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,0}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) + \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,3}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad + \big (\partial _\mu \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) - \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,0}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) + \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,1}^{\varvec{q}}(\varvec{r})\big ), \end{aligned}$$
(A.16a)
$$\begin{aligned} \Big [J_{\varvec{q}\varvec{q'}}^{\mu x, I}(\varvec{r})\Big ]_{kl}&= \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ) - \big (\partial _\mu \varphi _{k,0}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,3}^{\varvec{q}}(\varvec{r})\big ) - \big (\partial _\mu \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,0}^{\varvec{q}}(\varvec{r})\big ) - \big (\partial _\mu \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,1}^{\varvec{q}}(\varvec{r})\big ) - \big (\partial _\mu \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,1}^{\varvec{q}}(\varvec{r}), \end{aligned}$$
(A.16b)
$$\begin{aligned} \Big [J_{\varvec{q}\varvec{q'}}^{\mu y,R}(\varvec{r})\Big ]_{kl}&= \big (\partial _\mu \varphi _{k,0}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad + \big (\partial _\mu \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) - \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,3}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big ) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) + \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,0}^{\varvec{q}}(\varvec{r}) \big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,3}^{\varvec{q'}} (\varvec{r})\big ) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) + \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,1}^{\varvec{q}} (\varvec{r})\big ), \end{aligned}$$
(A.16c)
$$\begin{aligned} \Big [J_{\varvec{q}\varvec{q'}}^{\mu y,I}(\varvec{r})\Big ]_{kl}&= \big (\partial _\mu \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) - \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,0}^{\varvec{q'}} (\varvec{r})\big ) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) + \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,3}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad + \big (\partial _\mu \varphi _{k,2}^{\varvec{q'}} (\varvec{r})\big ) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) - \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,1}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) + \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,0}^{\varvec{q}}(\varvec{r})\big ), \end{aligned}$$
(A.16d)
$$\begin{aligned} \Big [J_{\varvec{q}\varvec{q'}}^{\mu z, R}(\varvec{r})\Big ]_{kl}&= \big (\partial _\mu \varphi _{k,1}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) - \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,0}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,0}^{\varvec{q'}} (\varvec{r})\big ) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) + \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,1}^{\varvec{q}}(\varvec{r})\big ) \nonumber \\&\quad + \big (\partial _\mu \varphi _{k,2}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,3}^{\varvec{q}}(\varvec{r}) - \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,3}^{\varvec{q}}(\varvec{r}) \big ) \nonumber \\&\quad - \big (\partial _\mu \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) + \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ), \end{aligned}$$
(A.16e)
$$\begin{aligned} \Big [J_{\varvec{q}\varvec{q'}}^{\mu z, I}(\varvec{r})\Big ]_{kl}&= \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,0}^{\varvec{q}}(\varvec{r})\big ) - \big (\partial _\mu \varphi _{k,0}^{\varvec{q'}}(\varvec{r}) \big ) \varphi _{l,0}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad + \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,1}^{\varvec{q}}(\varvec{r}) \big ) - \big (\partial _\mu \varphi _{k,1}^{\varvec{q'}}(\varvec{r}) \big ) \varphi _{l,1}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad - \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,2}^{\varvec{q}}(\varvec{r})\big ) + \big (\partial _\mu \varphi _{k,2}^{\varvec{q'}}(\varvec{r}) \big ) \varphi _{l,2}^{\varvec{q}}(\varvec{r}) \nonumber \\&\quad - \varphi _{k,3}^{\varvec{q'}}(\varvec{r}) \big (\partial _\mu \varphi _{l,3}^{\varvec{q}}(\varvec{r})\big ) + \big (\partial _\mu \varphi _{k,3}^{\varvec{q'}}(\varvec{r})\big ) \varphi _{l,3}^{\varvec{q}}(\varvec{r}). \end{aligned}$$
(A.16f)

Appendix B: Coupling constants

The coupling constants appearing in the Skyrme energy density (44) read

$$\begin{aligned} B_1&= \frac{1}{2}t_0\left( 1+\frac{1}{2}x_0\right) , \end{aligned}$$
(B.17a)
$$\begin{aligned} B_2&= - \frac{1}{2}t_0\left( \frac{1}{2} + x_0\right) , \end{aligned}$$
(B.17b)
$$\begin{aligned} B_3&= \frac{1}{4} \bigg (t_1 \left( 1 + \frac{1}{2}x_1\right) + t_2 \left( 1 + \frac{1}{2}x_2\right) \bigg ), \end{aligned}$$
(B.17c)
$$\begin{aligned} B_4&= -\frac{1}{4} \bigg (t_1\left( \frac{1}{2} + x_1\right) - t_2\left( \frac{1}{2} + x_2\right) \bigg ), \end{aligned}$$
(B.17d)
$$\begin{aligned} B_5&= -\frac{1}{16} \bigg (3t_1\left( 1+\frac{1}{2}x_1\right) - t_2\left( 1+\frac{1}{2}x_2\right) \bigg ), \end{aligned}$$
(B.17e)
$$\begin{aligned} B_6&= \frac{1}{16} \bigg (3t_1 \left( \frac{1}{2}+ x_1\right) + t_2(\frac{1}{2} + x_2)\bigg ), \end{aligned}$$
(B.17f)
$$\begin{aligned} B_7&= \frac{1}{12}t_3\left( 1+\frac{1}{2}x_3\right) , \end{aligned}$$
(B.17g)
$$\begin{aligned} B_8&= - \frac{1}{12}t_3\left( \frac{1}{2} + x_3\right) , \end{aligned}$$
(B.17h)
$$\begin{aligned} B_9&= -\frac{1}{2}W, \end{aligned}$$
(B.17i)
$$\begin{aligned} B_{10}&= \frac{1}{4}t_0x_0, \end{aligned}$$
(B.17j)
$$\begin{aligned} B_{11}&= -\frac{1}{4}t_0 , \end{aligned}$$
(B.17k)
$$\begin{aligned} B_{12}&= \frac{1}{24}t_3x_3, \end{aligned}$$
(B.17l)
$$\begin{aligned} B_{13}&= -\frac{1}{24}t_3. \end{aligned}$$
(B.17m)

Parameters \(t_i\), \(x_i\) (\(i = 0, 1, 2, 3\)), W, and \(\alpha \) are the standard parameters of the Skyrme pseudopotential [7, 73].

Appendix C: Variance of a one-body operator in a normalized MC-TDDFT state

To evaluate the variance of Eq. (65), we need an expectation value of the \({\hat{O}}^2\) operator in a normalized MC-TDDFT state. We start from

$$\begin{aligned} {\langle {\varPsi (t)|{\hat{O}}^2|\varPsi (t)}\rangle } = \int _{\varvec{q} \varvec{q'}} \! \! \,d\varvec{q} \,d\varvec{q'} g^*_{\varvec{q}}(t) {{\mathcal {O}}^2}^c_{\varvec{q}\varvec{q'}}(t) g_{\varvec{q'}}(t). \end{aligned}$$
(C.18)

Again, the collective kernel of the \({\hat{O}}^2\) operator is calculated from (24) and the corresponding usual kernel follows from the generalized Wick theorem,

$$\begin{aligned} \begin{aligned} {\mathcal {O}}^2_{\varvec{q} \varvec{q'}}(t) = {\mathcal {N}}_{\varvec{q} \varvec{q'}}(t) \Big [&{{\textrm{Tr}}}^2\big (O\rho ^{\varvec{q}\varvec{q'}}(t)\big ) \\ +&{{\textrm{Tr}}}\big (O\rho ^{\varvec{q}\varvec{q'}}(t)O(1-\rho ^{\varvec{q}\varvec{q'}}(t)\big )\Big ]. \end{aligned} \end{aligned}$$
(C.19)

Here,

$$\begin{aligned} {{\textrm{Tr}}}\big (O\rho ^{\varvec{q}\varvec{q'}}(t)\big ) = \int \,d^3 \varvec{r} O(\varvec{r}) \rho _{\varvec{q} \varvec{q'}}(\varvec{r}; t). \end{aligned}$$
(C.20)

Furthermore, the second trace corresponds to the sum of two terms,

$$\begin{aligned} {{\textrm{Tr}}}\big (O\rho ^{\varvec{q}\varvec{q'}}(t)O(1-\rho ^{\varvec{q}\varvec{q'}}(t)\big ) = C_1^{\varvec{q} \varvec{q'}}(t) + C_2^{\varvec{q} \varvec{q'}}(t). \nonumber \\ \end{aligned}$$
(C.21)

The first term reads

$$\begin{aligned} \begin{aligned} C_1^{\varvec{q} \varvec{q'}}(t)&= \int \,d^3 \varvec{r} O^2(\varvec{r}) \sum _{kl} \Big [M_{\varvec{q} \varvec{q'}}^{-1}(t)\Big ]_{kl} \\ {}&\quad \times \biggl \{ A_{kl}^{\varvec{q}\varvec{q'}}(\varvec{r};t) + \quad iB_{kl}^{\varvec{q}\varvec{q'}}(\varvec{r};t) \biggl \}, \end{aligned} \end{aligned}$$
(C.22)

with

$$\begin{aligned} A_{kl}^{\varvec{q}\varvec{q'}}(\varvec{r};t) = \sum _{\alpha } \varphi _{k,\alpha }^{\varvec{q'}}(\varvec{r};t) \varphi _{l,\alpha }^{\varvec{q}}(\varvec{r};t) \end{aligned}$$
(C.23)

and

$$\begin{aligned} \begin{aligned} B_{kl}^{\varvec{q}\varvec{q'}}(\varvec{r};t)&= \varphi _{k,1}^{\varvec{q'}}(\varvec{r};t) \varphi _{l,0}^{\varvec{q}}(\varvec{r};t) \\ {}&\quad - \varphi _{k,0}^{\varvec{q'}}(\varvec{r};t) \varphi _{l,1}^{\varvec{q}}(\varvec{r};t) \\ {}&\quad + \varphi _{k,3}^{\varvec{q'}}(\varvec{r};t) \varphi _{l,2}^{\varvec{q}}(\varvec{r};t) \\ {}&\quad - \varphi _{k,2}^{\varvec{q'}}(\varvec{r};t) \varphi _{l,3}^{\varvec{q}}(\varvec{r};t). \end{aligned} \end{aligned}$$
(C.24)

The second term reads

$$\begin{aligned} \begin{aligned} C_2^{\varvec{q} \varvec{q'}}(t)&= \int \,d^3 \varvec{r} \int \,d^3 \varvec{r'} O(\varvec{r}) O(\varvec{r'}) \\ {}&\quad \times \sum _{klmn} \Big [M_{\varvec{q} \varvec{q'}}^{-1}(t)\Big ]_{kl} \Big [M_{\varvec{q} \varvec{q'}}^{-1}(t)\Big ]_{mn} \\&\quad \times \biggl \{ A_{kn}^{\varvec{q}\varvec{q'}}(\varvec{r};t) + iB_{kn}^{\varvec{q}\varvec{q'}}(\varvec{r};t) \biggl \} \\ {}&\quad \times \biggl \{ A_{ml}^{\varvec{q}\varvec{q'}}(\varvec{r'};t) + iB_{ml}^{\varvec{q}\varvec{q'}}(\varvec{r'};t) \biggl \}. \end{aligned} \end{aligned}$$
(C.25)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marević, P., Regnier, D. & Lacroix, D. Multiconfigurational time-dependent density functional theory for atomic nuclei: technical and numerical aspects. Eur. Phys. J. A 60, 10 (2024). https://doi.org/10.1140/epja/s10050-024-01231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01231-8

Navigation