Skip to main content
Log in

Coupled reaction channel analysis of one- and two-nucleon transfer in \(^{\textbf{28}}\)Si+\(^{\textbf{90,94}}\)Zr

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Coupled reaction channel approach has been quite successful in describing the mechanism of multi-nucleon transfer in heavy ion-induced reactions. However, considerable ambiguities exist in the choice of potential parameters and the states of participating nuclides that should be coupled for a given reaction channel. Here we report simultaneous analysis of both angular distributions and excitation functions for one- and two-nucleon transfer in the systems \(^{28}\)Si+\(^{90,94}\)Zr within the coupled reaction channel formalism. Spectroscopic amplitudes are obtained from the literature and large-scale shell model calculations. The uncertainties in the cross sections, introduced by the choice of effective interactions in shell model, are also investigated. While one-nucleon transfer in the system \(^{28}\)Si+\(^{94}\)Zr have been well reproduced by inclusion of the ground and the first excited states of projectile-likes in the exit channel, more states of the same are to be coupled for the system \(^{28}\)Si+\(^{90}\)Zr. Observed bell-shaped angular distribution of one-proton stripping channel in \(^{28}\)Si+\(^{94}\)Zr is found to be caused by a large contribution of direct transfer from the ground and the first excited states of projectile-likes. In contrast, a flat angular distribution of one-proton stripping channel in \(^{28}\)Si+\(^{90}\)Zr appears to have been caused by a large number of indirect transitions. For two-nucleon transfer, both one-step and two-step processes have been considered. Reasonable reproduction of measured cross sections has been achieved by application of the extreme cluster model for the transfer of a pair of nucleons. No arbitrary scaling of the theoretical results has been necessary and only a minor variation of the binding radius has been allowed in our calculations. More such studies are warranted for mitigating the ambiguities in coupled reaction channel description of multi-nucleon transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availibility statement

This manuscript has no associated data or the data will not be deposited.

References

  1. R.A. Broglia, A. Winther, Heavy-Ion Reactions (Addison-Wesley, Reading, 1981)

    Google Scholar 

  2. L. Corradi, G. Pollarolo, S. Szilner, Multinucleon transfer processes in heavy-ion reactions. J. Phys. G.: Nucl. Part. Phys. 36, 113101 (2009). https://doi.org/10.1088/0954-3899/36/11/113101

    Article  ADS  Google Scholar 

  3. G. Potel, A. Idini, F. Barranco, E. Vigezzi, R.A. Broglia, Cooper pair transfer in nuclei. Rep. Prog. Phys. 76, 106301 (2013). https://doi.org/10.1088/0034-4885/76/10/106301

    Article  ADS  Google Scholar 

  4. Tea Mijatović and on behalf of the PRISMA collaboration, Multinucleon transfer reactions: a mini-review of recent advances. Front. Phys. 10, 965198 (2022). https://doi.org/10.3389/fphy.2022.965198

  5. R.M. Pérez-Vidal, F. Galtarossa, T. Mijatović, S. Szilner, I. Zanon, D. Brugnara, J. Pellumaj, M. Ciemala, J.J. Valiente-Dobón, L. Corradi, E. Clément, S. Leoni, B. Fornal, M. Siciliano, A. Gadea, Nuclear structure advancements with multi-nucleon transfer reactions. Eur. Phys. J. A 59, 114 (2023). https://doi.org/10.1140/epja/s10050-023-01027-2

    Article  ADS  Google Scholar 

  6. J. Diklić, S. Szilner, L. Corradi, T. Mijatović, G. Pollarolo, P. Ćolović, G. Colucci, E. Fioretto, F. Galtarossa, A. Goasduff, A. Gottardo, J. Grebosz, A. Illana, G. Jaworski, M. Jurado Gomez, T. Marchi, D. Mengoni, G. Montagnoli, D. Nurkić, M. Siciliano, N. Soić, A.M. Stefanini, D. Testov, J.J. Valiente-Dobón and N. Vukman, Transfer reactions in \(^{206}\rm Pb+^{118}\rm Sn\rm \): From quasielastic to deep-inelastic processes. Phys. Rev. C 107, 014619 (2023). https://doi.org/10.1103/PhysRevC.107.014619

  7. L. Corradi, S. Szilner, G. Pollarolo, T. Mijatović, D. Montanari, E. Fioretto, A. Goasduff, D. Jelavić Malenica, G. Montagnoli and A.M. Stefanini, Evidence of proton-proton correlations in the \(^{116}\)Sn+\(^{60}\)Ni transfer reactions. Phys. Lett. B 834, 137477 (2022). https://doi.org/10.1016/j.physletb.2022.137477

  8. G.G. Adamian, N.V. Antonenko, A. Diaz-Torres, S. Heinz, How to extend the chart of nuclides? Eur. Phys. J. A 56, 47 (2020). https://doi.org/10.1140/epja/s10050-020-00046-7

    Article  ADS  Google Scholar 

  9. V. Zagrebaev, W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer reactions. Phys. Rev. Lett. 101, 122701 (2008). https://doi.org/10.1103/PhysRevLett.101.122701

    Article  ADS  Google Scholar 

  10. G.G. Adamian, N.V. Antonenko, V.V. Sargsyan, W. Scheid, Predicted yields of new neutron-rich isotopes of nuclei with \(Z=64\)-80 in the multinucleon transfer reaction \(^{48}\rm Ca\mathit{+^{238}\rm U}\). Phys. Rev. C 81, 057602 (2010). https://doi.org/10.1103/PhysRevC.81.057602

    Article  ADS  Google Scholar 

  11. C. Agodi, A.D. Russo, L. Calabretta, G. D’Agostino, F. Cappuzzello, M. Cavallaro, D. Carbone, P. Finocchiaro, L. Pandola, D. Torresi, D. Calvo, D. Sartirana, L. Campajola, V. Capirossi, F. Iazzi, F. Pinna, The NUMEN Project: toward new experiments with high-intensity beams. Universe 7, 72 (2021). https://doi.org/10.3390/universe7030072

    Article  ADS  Google Scholar 

  12. I. Ciraldo, F. Cappuzzello, M. Cavallaro, D. Carbone, S. Burrello, A. Spatafora, A. Gargano, G. De Gregorio, R.I. Magaña Vsevolodovna, L. Acosta, C. Agodi, P. Amador-Valenzuela, T. Borello-Lewin, G.A. Brischetto, S. Calabrese, D. Calvo, V. Capirossi, E.R. Chávez Lomelí, M. Colonna, F. Delaunay, H. Djapo, C. Eke, P. Finocchiaro, S. Firat, M. Fisichella, A. Foti, A. Hacisalihoglu, F. Iazzi, L. La Fauci, R. Linares, N.H. Medina, M. Moralles, J.R.B. Oliveira, A. Pakou, L. Pandola, H. Petrascu, F. Pinna, G. Russo, E. Santopinto, O. Sgouros, M.A. Guazzelli, S.O. Solakci, V. Soukeras, G. Souliotis, D. Torresi, S. Tudisco, A. Yildirim and V.A.B. Zagatto, Analysis of the one-neutron transfer reaction in \(^{\rm 18}\)O + \(^{\rm 76}\)Se collisions at 275 MeV, Phys. Rev. C 105, 044607 (2022). https://doi.org/10.1103/PhysRevC.105.044607

  13. I.J. Thompson, Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6

  14. E. Maglione, G. Pollarolo, A. Vitturi, R.A. Broglia, A. Winther, Absolute cross sections of two-nucleon transfer reactions induced by heavy ions. Phys. Lett. B 162, 59 (1985). https://doi.org/10.1016/0370-2693(85)91061-5

    Article  ADS  Google Scholar 

  15. M. Cavallaro, F. Cappuzzello, M. Bondi, D. Carbone, V.N. Garcia, A. Gargano, S.M. Lenzi, J. Lubian, C. Agodi, F. Azaiez, M. De Napoli, A. Foti, S. Franchoo, R. Linares, D. Nicolosi, M. Niikura, J.A. Scarpaci, S. Tropea, Quantitative analysis of two-neutron correlations in the \(^{12}\)C(\(^{18}\)O, \(^{16}\)O)\(^{14}\)C reaction. Phys. Rev. C 88, 054601 (2013). https://doi.org/10.1103/PhysRevC.88.054601

    Article  ADS  Google Scholar 

  16. D. Carbone, J.L. Ferreira, F. Cappuzzello, J. Lubian, C. Agodi, M. Cavallaro, A. Foti, A. Gargano, S.M. Lenzi, R. Linares, G. Santagati, Microscopic cluster model for the description of new experimental results on the \(^{13}\)C(\(^{18}\)O, \(^{16}\)O)\(^{15}\)C two-neutron transfer at 84 MeV incident energy. Phys. Rev. C 95, 034603 (2017). https://doi.org/10.1103/PhysRevC.95.034603

    Article  ADS  Google Scholar 

  17. M.J. Ermamatov, F. Cappuzzello, J. Lubian, M. Cubero, C. Agodi, D. Carbone, M. Cavallaro, J.L. Ferreira, A. Foti, V.N. Garcia, A. Gargano, J.A. Lay, S.M. Lenzi, R. Linares, G. Santagati, A. Vitturi, Two-neutron transfer analysis of the \(^{16}\)O(\(^{18}\)O, \(^{16}\)O)\(^{16}\)O reaction. Phys. Rev. C 94, 024610 (2016). https://doi.org/10.1103/PhysRevC.94.024610

    Article  ADS  Google Scholar 

  18. E.N. Cardozo, J. Lubian, R. Linares, F. Cappuzzello, D. Carbone, M. Cavallaro, J.L. Ferreira, A. Gargano, B. Paes, G. Santagati, Competition between direct and sequential two-neutron transfers in the \(^{18}\)O + \(^{28}\)Si collision at 84 MeV. Phys. Rev. C 97, 064611 (2018). https://doi.org/10.1103/PhysRevC.97.064611

    Article  ADS  Google Scholar 

  19. B. Paes, G. Santagati, R.M. Vsevolodovna, F. Cappuzzello, D. Carbone, E.N. Cardozo, M. Cavallaro, H. Garcia-Tecocoatzi, A. Gargano, J.L. Ferreira, S.M. Lenzi, R. Linares, E. Santopinto, A. Vitturi, J. Lubian, Long-range versus short-range correlations in the two-neutron transfer reaction \(^{64}\)Ni(\(^{18}\)O, \(^{16}\)O)\(^{66}\)Ni. Phys. Rev. C 96, 044612 (2017). https://doi.org/10.1103/PhysRevC.96.044612

    Article  ADS  Google Scholar 

  20. B.J. Roy, S. Santra, A. Pal, H. Kumawat, S.K. Pandit, V.V. Parkar, K. Ramachandran, K. Mahata, K. Sekizawa, Reaction mechanism study for multinucleon transfer processes in collisions of spherical and deformed nuclei at energies near and above the Coulomb barrier: The \(^{16}\)O+\(^{154}\)Sm reaction. Phys. Rev. C 105, 044611 (2022). https://doi.org/10.1103/PhysRevC.105.044611

    Article  ADS  Google Scholar 

  21. R.R. Betts, P.M. Evans, C.N. Pass, N. Poffé, A.E. Smith, L. Stuttgé, J.S. Lilley, D.W. Banes, K.A. Connell, J. Simpson, J.R.H. Smith, A.N. James, B.R. Fulton, Measurement of sub-barrier transfer reactions for \(^{58}\)Ni+Sn using a recoil mass separator. Phys. Rev. Lett. 59, 978 (1987). https://doi.org/10.1103/PhysRevLett.59.978

    Article  ADS  Google Scholar 

  22. D.R. Napoli, A. Stefanini, H. Gonzalez, B. Million, G. Prete, P. Spolaore, M. Narayanasamy, Zi Chang Li, S. Beghini, G. Montagnoli, F. Scarlassara, G. Segato, C. Signorini, F. Soramel, G. Pollarolo and A. Rapisarda, Sub-barrier transfer reactions of \(^{32}{\rm S}\)\({+}^{64}{\rm Ni}\). Nucl. Phys. A 559, 443 (1993). https://doi.org/10.1016/0375-9474(93)90162-Q

  23. R.B. Roberts, S.B. Gazes, J.E. Mason, M. Satteson, S.G. Teichmann, L.L. Lee, J.F. Liang, J.C. Mahon, R.J. Vojtech, Sub-barrier one- and two-neutron pickup measurements in \(^{32}\)S+\(^{93}\)Nb, \(^{98,100}\)Mo reactions at \(180^{\circ }\). Phys. Rev. C 47, R1831 (1993). https://doi.org/10.1103/PhysRevC.47.R1831

    Article  ADS  Google Scholar 

  24. J.M.B. Shorto, E. Crema, R.F. Simões, D.S. Monteiro, J.F.P. Huiza, N. Added, P.R.S. Gomes, Effects of the target spin on the reaction mechanism of the \(^{16}\)O+\(^{63}\)Cu system. Phys. Rev. C 78, 064610 (2008). https://doi.org/10.1103/PhysRevC.78.064610

    Article  ADS  Google Scholar 

  25. J.F.P. Huiza, E. Crema, A. Barioni, D.S. Monteiro, J.M.B. Shorto, R.F. Simões, P.R.S. Gomes, Quasi-elastic barrier distribution of the \(^{17}{\rm O}\)\({+}^{64}{\rm Zn}\) system and the derivation of the \(^{17}\rm O \) nuclear matter diffuseness. Phys. Rev. C 82, 054603 (2010). https://doi.org/10.1103/PhysRevC.82.054603

    Article  ADS  Google Scholar 

  26. E. Crema, V.A.B. Zagatto, J.M.B. Shorto, B. Paes, J. Lubian, R.F. Simões, D.S. Monteiro, J.F.P. Huiza, N. Added, M.C. Morais, P.R.S. Gomes, Reaction mechanisms of the \(^{18}\)O+\(^{63}\)Cu system at near-barrier energies. Phys. Rev. C 98, 044614 (2018). https://doi.org/10.1103/PhysRevC.98.044614

    Article  ADS  Google Scholar 

  27. E. Crema, V.A.B. Zagatto, J.M.B. Shorto, B. Paes, J. Lubian, R.F. Simões, D.S. Monteiro, J.F.P. Huiza, N. Added, M.C. Morais, P.R.S. Gomes, Reaction mechanisms of the \(^{16}\)O+\(^{65}\)Cu system. Phys. Rev. C 99, 054623 (2019). https://doi.org/10.1103/PhysRevC.99.054623

    Article  ADS  Google Scholar 

  28. E. Crema, B. Paes, V.A.B. Zagatto, J.F.P. Huiza, J. Lubian, J.M.B. Shorto, R.F. Simões, D.S. Monteiro, N. Added, M.C. Morais, P.R.S. Gomes, Strong neutron-transfer coupling effects in the reaction mechanism of the \(^{18}\)O+\(^{64}\)Zn system at energies near the Coulomb barrier. Phys. Rev. C 100, 054608 (2019). https://doi.org/10.1103/PhysRevC.100.054608

    Article  ADS  Google Scholar 

  29. V.A.B. Zagatto, E. Crema, J.M.B. Shorto, M.C. Morais, J. Lubian, N. Added, R.F. Simões, D.S. Monteiro, J.F.P. Huiza, B. Paes and P.R.S. Gomes, Scattering of \(^{16,18}\rm O\) beams on \(^{63,65}\rm Cu\rm \) targets: A systematic study of different reaction channels, Phys. Rev. C 100, 044602 (2019). https://doi.org/10.1103/PhysRevC.100.044602

  30. R. Biswas, S. Nath, J. Gehlot, Gonika, C. Kumar, A. Parihari, N. Madhavan, A. Vinayak, A. Mahato, S. Noor, P. Sherpa, K. Sekizawa, Determination of \(1p\)- and \(2p\)-stripping excitation functions for \(^{16}\)O+\(^{142}\)Ce using a recoil mass spectrometer. Eur. Phys. J. A 59, 60 (2023). https://doi.org/10.1140/epja/s10050-023-00975-z

  31. H. Esbensen, C.L. Jiang and K.E. Rehm, Coupled-channels analysis of \(^{58}\)Ni+\(^{124}\)Sn reactions. Phys. Rev. C 57, 2401 (1998). https://doi.org/10.1103/PhysRevC.57.2401

  32. Sunil Kalkal, S. Mandal, A. Jhingan, J. Gehlot, P. Sugathan, K. S. Golda, N. Madhavan, R. Garg, S. Goyal, G. Mohanto, R. Sandal, S. Chakraborty, S. Verma, B. Behera, G. Eleonora, H.J. Wollersheim, R. Singh, Measurements and coupled reaction channels analysis of one- and two-proton transfer reactions for the \(^{28}\rm Si\mathit{+^{90,94}\rm Zr}\) systems, Phys. Rev. C 85, 034606 (2012). https://doi.org/10.1103/PhysRevC.85.034606

  33. C. Kumar, Gonika, S. Kalkal, S. Nath S. Mandal, N. Madhavan, E. Prasad, R. Sandal, J. Gehlot, R. Garg, G. Mohanto, M. Saxena, S. Goyal, S. Verma, B. Behera, S. Kumar, U. Datta, A.K. Sinha and R. Singh, Multi-nucleon transfer cross sections in \(^{28}{\rm Si} +^{90,94}{\rm Zr}\). Proc. DAE Symp. Nucl. Phys. 66, 567 (2022). http://www.sympnp.org/proceedings/66/B112.pdf

  34. A.K. Sinha, N. Madhavan, J.J. Das, P. Sugathan, D.O. Kataria, A.P. Patro, G.K. Mehta, Heavy ion reaction analyzer (HIRA): a recoil mass separator facility at NSC. Nucl. Instrum. Methods A 339, 543 (1994). https://doi.org/10.1016/0168-9002(94)90191-0

  35. S. Kalkal, S. Mandal, N. Madhavan, A. Jhingan, E. Prasad, R. Sandal, S. Nath, J. Gehlot, R. Garg, G. Mohanto, M. Saxena, S. Goyal, S. Verma, B.R. Behera, S. Kumar, U.D. Pramanik, A.K. Sinha and R. Singh, Multinucleon transfer reactions for the \(^{28}\)Si+\(^{90,94}\)Zr systems in the region below and near the Coulomb barrier. Phys. Rev. C 83, 054607 (2011). https://doi.org/10.1103/PhysRevC.83.054607

  36. B.A. Brown, W.D.M. Rae, The Shell-model code NuShellX@MSU. Nucl. Data Sheets 120, 115 (2014). https://doi.org/10.1016/j.nds.2014.07.022

    Article  ADS  Google Scholar 

  37. B.A. Brown, B.H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1988). https://doi.org/10.1146/annurev.ns.38.120188.000333

    Article  ADS  Google Scholar 

  38. C.-H. Rong, G.-L. Zhang, L. Gan, Z.-H. Li, L.C. Brandão, E.N. Cardozo, M.R. Cortes, Y.-J. Li, J. Su, S.-Q. Yan, S. Zeng, G. Lian, B. Guo, Y.-B. Wang, W.-P. Liu, J. Lubian, The angular distributions of elastic scattering of \(^{12,13}\)C+Zr. Chin. Phys. C 44, 104003 (2020). https://doi.org/10.1088/1674-1137/abab8d

    Article  ADS  Google Scholar 

  39. H. Mach, E.K. Warburton, R.L. Gill, R.F. Casten, J.A. Becker, B.A. Brown, J.A. Winger, Meson-exchange enhancement of the first-forbidden \(^{96}\)Y\(^{\rm g\rm ({0}^{\rm -}\rm ) {\rightarrow }^{96}Zr^{}g }\)(\(0^{+}\)) \(\beta \) transition: \(\beta \) decay of the low-spin isomer of \(^{96}\)Y. Phys. Rev. C 41, 226 (1990). https://doi.org/10.1103/PhysRevC.41.226

    Article  ADS  Google Scholar 

  40. B.A. Brown and W.D.M. Rae, MSU-NSCL report (2007)

  41. P.P. Tung, K.A. Erb, M.W. Sachs, G.B. Sherwood, R.J. Ascuitto, D.A. Bromley, Sequential amplitudes in heavy-ion induced two-proton transfer reactions. Phys. Rev. C 18, 1663 (1978). https://doi.org/10.1103/PhysRevC.18.1663

    Article  ADS  Google Scholar 

  42. M. Moshinsky, Transformation brackets for harmonic oscillator functions. Nucl. Phys. 13, 104 (1959). https://www.sciencedirect.com/science/article/pii/0029558259901439

  43. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983)

    Google Scholar 

  44. D. Victor, Efros, Calculation of oscillator (Talmi-Moshinsky-Smirnov) brackets. Comput. Phys. Commun. 265, 108005 (2021). https://doi.org/10.1016/j.cpc.2021.108005

    Article  Google Scholar 

  45. http://www.fresco.org.uk

  46. Ö. Akyüz and A. Winther, Proceedings of the International School of Physics ”Enrico Fermi”, Course LXXVII edited by R. A. Broglia, C.H. Dasso, and R. Ricci (North-Holland, Amsterdam, 1981)

  47. F.D. Becchetti Jr., G.W. Greenlees, Nucleon-nucleus optical-model parameters, A\(>\) 40, E\(<\) 50 MeV. Phys. Rev. 182, 1190 (1969). https://doi.org/10.1103/PhysRev.182.1190

    Article  ADS  Google Scholar 

  48. R.A. Broglia, A. Winther, Heavy Ion Physics, Part I and Part II (Addison-Wesley Publishing, Redwood City, 1991)

    Google Scholar 

  49. S. Kalkal, S. Mandal, N. Madhavan, A. Jhingan, S. Nath, E. Prasad, R. Sandal, S. Goyal, M. Saxena, G. Mohanto, S. Verma, B.R. Behera, S. Kumar, U. Datta, A.K. Sinha, R. Singh and S. Noor, Ground state and excited state multinucleon transfer channels in interactions of \(^{28}\)Si with \(^{90,94}\)Zr in near barrier region. Int. J. Mod. Phy. E. 30, 2150053 (2021). https://doi.org/10.1142/S0218301321500531

  50. J.C. Peng, M.C. Mermaz, A. Greiner, N. Lisbona and K.S. Low, One-proton transfer reactions induced by \(^{16}\)O and \(^{12}\)C on \(^{62}\)Ni target isotope, Phys. Rev. C 15, 1331 (1977). https://doi.org/10.1103/PhysRevC.15.1331

  51. J.B. Ball, C.B. Fulmer, Neutron hole states in \(Z = 40\) nuclei studied with the (\(p\), \(d\)) reaction on \(^{90}\)Zr, \(^{91}\)Zr and \(^{92}\)Zr. Phys. Rev. 172, 1199 (1968). https://doi.org/10.1103/PhysRev.172.1199

    Article  ADS  Google Scholar 

  52. G.B. Sherwood, K.A. Erb, D.L. Hanson, R.J. Ascuitto, D.A. Bromley, J.J. Kolata, Interference effects in the reaction \(^{48}\rm Ti\)(\(^{16}\rm O\rm \), \(^{15}\rm N\rm \)) \(^{49}\rm V\rm \). Phys. Rev. C 18, 2574 (1978). https://doi.org/10.1103/PhysRevC.18.2574

    Article  ADS  Google Scholar 

  53. M. Conjeaud, S. Harar, E.F. Da Silveira, C. Volant, Transfer reactions induced by \(^{12}\)C ON \(^{18}\)O and \(^{26}\)Mg AT 46 MeV. Nucl. Phys. A 250, 182 (1975). https://doi.org/10.1016/0375-9474(75)90208-0

    Article  ADS  Google Scholar 

  54. V. Jha, B.J. Roy, A. Chatterjee, H.S. Patel, B. Srinivasan, M.G. Betigeri, H. Machner, \(^{16}\)O-induced transfer reactions on \(^{90}\)Zr. Eur. Phys. J. A 15, 389 (2002). https://doi.org/10.1140/epja/i2001-10221-1

    Article  ADS  Google Scholar 

  55. A. Parmar, Sonika, B.J. Roy, V. Jha, U.K. Pal, T. Sinha, S.K. Pandit, V.V. Parkar, K. Ramachandran and K. Mahata, Understanding the two neutron transfer reaction mechanism in \(^{208}\)Pb(\(^{16}\)O, \(^{18}\)O)\(^{206}\)Pb, Nucl. Phys. A 940, 167 (2015). https://doi.org/10.1016/j.nuclphysa.2015.04.004

  56. D.T. Khoa, W. von Oertzen, Di-neutron elastic transfer in the \(^{4}\)He(\(^{6}\)He, \(^{6}\)He)\(^{4}\)He reaction. Phys. Lett. B 595, 193 (2004). https://doi.org/10.1016/j.physletb.2004.05.063

    Article  ADS  Google Scholar 

  57. M. Evers, M. Dasgupta, D.J. Hinde, D.H. Luong, R. Rafiei, R. du Rietz and C. Simenel, Cluster transfer in the reaction \(^{16}\)O+\(^{208}\)Pb at energies well below the fusion barrier: a possible doorway to energy dissipation. Phys. Rev. C 84, 054614 (2011). https://doi.org/10.1103/PhysRevC.84.054614

  58. M. Evers, M. Dasgupta, D.J. Hinde, C. Simenel, Sub-barrier transfer in \(^{16}\)O+\(^{208}\)Pb and \(^{32}\)S+\(^{208}\)Pb and its role in understanding the suppression of fusion. EPJ Web Conf. 35, 05005 (2012). https://doi.org/10.1051/epjconf/20123505005

    Article  Google Scholar 

  59. S. Szilner, L. Corradi, G. Pollarolo, S. Beghini, B.R. Behera, E. Fioretto, A. Gadea, F. Haas, A. Latina, G. Montagnoli, F. Scarlassara, A.M. Stefanini, M. Trotta, A.M. Vinodkumar and Y. Wu, Multinucleon transfer processes in \(^{40}\)Ca+\(^{208}\)Pb. Phys. Rev. C 71, 044610 (2005). https://doi.org/10.1103/PhysRevC.71.044610

  60. K. Sekizawa and K. Yabana, Time-dependent Hartree-Fock calculations for multinucleon transfer processes in \(^{40,48}\)Ca+\(^{124}\)Sn, \(^{40}\)Ca+\(^{208}\)Pb and \(^{58}\)Ni+\(^{208}\)Pb. Phys. Rev. C 88, 014614 (2013). https://doi.org/10.1103/PhysRevC.88.014614

  61. L. Corradi, S. Szilner, G. Pollarolo, G. Colò, P. Mason, E. Farnea, E. Fioretto, A. Gadea, F. Haas, D. Jelavić-Malenica, N. Mărginean, C. Michelagnoli, G. Montagnoli, D. Montanari, F. Scarlassara, N. Soić, A.M. Stefanini, C.A. Ur and J.J. Valiente-Dobón, Single and pair neutron transfers at sub-barrier energies, Phys. Rev. C 84, 034603 (2011). https://doi.org/10.1103/PhysRevC.84.034603

  62. G. Scamps, K. Hagino, Coupled-channels description of multinucleon transfer and fusion reactions at energies near and far below the Coulomb barrier. Phys. Rev. C 92, 054614 (2015). https://doi.org/10.1103/PhysRevC.92.054614

    Article  ADS  Google Scholar 

  63. J.L. Ferreira, D. Carbone, M. Cavallaro, N.N. Deshmukh, C. Agodi, G.A. Brischetto, S. Calabrese, F. Cappuzzello, E.N. Cardozo, I. Ciraldo, M. Cutuli, M. Fisichella, A. Foti, L. La Fauci, O. Sgouros, V. Soukeras, A. Spatafora, D. Torresi and J. Lubian, Analysis of two-proton transfer in the \(^{40}\)Ca(\(^{18}\)O, \(^{20}\)Ne)\(^{38}\)Ar reaction at 270 MeV incident energy, Phys. Rev. C 103, 054604 (2021). https://doi.org/10.1103/PhysRevC.103.054604

  64. T. Takemasa, H. Yoshida, Analysis of two-nucleon transfer reactions by heavy ions on the basis of one- and two-step processes. Nucl. Phys. A 304, 221 (1978). https://doi.org/10.1016/0375-9474(78)90106-9

    Article  ADS  Google Scholar 

  65. L. Corradi, A.M. Vinodkumar, A.M. Stefanini, E. Fioretto, G. Prete, S. Beghini, G. Montagnoli, F. Scarlassara, G. Pollarolo, F. Cerutti and Aage Winther, Light and heavy transfer products in \(^{58}\)Ni+\(^{208}\)Pb at the Coulomb barrier. Phys. Rev. C 66, 024606 (2002). https://doi.org/10.1103/PhysRevC.66.024606

Download references

Acknowledgements

One of the authors (C.K.) acknowledges financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, via Grant No. CSIR/09/760(0038)/2019-EMR-I. The authors acknowledge beneficial discussions with Dr. Noritaka Shimizu and Ishtiaq Ahmed on large-scale shell model calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nath.

Additional information

Communicated by Arnau Rios Huguet.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, C., Gonika, Yashraj et al. Coupled reaction channel analysis of one- and two-nucleon transfer in \(^{\textbf{28}}\)Si+\(^{\textbf{90,94}}\)Zr. Eur. Phys. J. A 59, 277 (2023). https://doi.org/10.1140/epja/s10050-023-01195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01195-1

Navigation