Skip to main content
Log in

Neutron transfer in the 48Ca + 197Au reaction

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this study, we investigated the production of Au isotopes through neutron transfer reactions in the 48Ca + 197Au collision at a beam energy of 300 MeV. The reaction products of 197±xAu were captured and stopped within an assembly of Au targets after being irradiated with a 48Ca beam. The populated Au isotopes were identified through gamma decay spectroscopy and production cross-sections were determined. Furthermore, we performed model calculations based on the solution of the time-dependent Schrödinger equation for neutrons. These calculations aimed to estimate the formation probabilities and cross-sections of the measured Au isotopes and to elucidate the dynamics of the neutron transfer process. To describe the cross sections of neutron transfer channels and compare with the results of calculations within the framework of the model based on the time-dependent Schrödinger equation, calculations using the Grazing code were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The experimental data in Figs. 5 and 9b used to compare the calculation results were published by H. Grawe et al., Rep. Prog. Phys. 70, 1525 (2007) and A.J. Pacheco et al., Phys. Rev. C 45, 2861 (1992), respectively.]

References

  1. J. Kurcewicz et al., Phys. Lett. B 717, 371 (2012)

    ADS  Google Scholar 

  2. H.M. Devaraja, A.V. Yeremin, S. Heinz, A.G. Popeko, Phys. Part. Nucl. Lett. 19, 676–698 (2022)

    Google Scholar 

  3. L. Corradi et al., J. Phys. G Nucl. Part Phys. 36, 113101 (2009)

    ADS  Google Scholar 

  4. W.D. Loveland, Front. Phys. 7, 00023 (2019)

    Google Scholar 

  5. K. Sekizawa, Front. Phys. 7, 00020 (2019)

    Google Scholar 

  6. T. Mijatović, Front. Phys. 10, 965198 (2022)

    Google Scholar 

  7. S. Heinz, H.M. Devaraja, Eur. Phys. J. A 58, 114 (2022)

    ADS  Google Scholar 

  8. T. Mijatovic et al., Phys. Rev. C 94, 064616 (2016)

    ADS  Google Scholar 

  9. H.M. Devaraja et al., Phys. Lett. B 748, 199 (2015)

    ADS  Google Scholar 

  10. H.M. Devaraja et al., Eur. Phys. J. A 55, 25 (2019)

    ADS  Google Scholar 

  11. H.M. Devaraja et al., Eur. Phys. J. A 56, 224 (2020)

    ADS  Google Scholar 

  12. O. Beliuskina et al., Eur. Phys. J. A 50, 161 (2014)

    ADS  Google Scholar 

  13. W. Królas et al., Nucl. Phys. A 724, 289 (2003)

    ADS  Google Scholar 

  14. L. Corradi et al., Phys. Rev. C 59, 261 (1999)

    ADS  Google Scholar 

  15. Y.X. Watanabe et al., Phys. Rev. Lett. 115, 172503 (2015)

    ADS  Google Scholar 

  16. V.V. Desai et al., Phys. Rev. C 99, 044604 (2019)

    ADS  Google Scholar 

  17. J.S. Barrett et al., Phys. Rev. C 91, 064615 (2015)

    ADS  Google Scholar 

  18. A. Vogt et al., Phys. Rev. C 92, 024619 (2015)

    ADS  Google Scholar 

  19. F. Galtarossa et al., Phys. Rev. C 97, 054606 (2018)

    ADS  Google Scholar 

  20. G.G. Adamian, N.V. Antonenko, W. Scheid, Phys. Rev. C 68, 034601 (2003)

    ADS  Google Scholar 

  21. V. Zagrebaev, W. Greiner, J. Phys. G Nucl. Part Phys. 31, 825 (2005)

    ADS  Google Scholar 

  22. Z.-Q. Feng, G.-M. Jin, J.-Q. Li, Phys. Rev. C 80, 067601 (2009)

    ADS  Google Scholar 

  23. A.V. Karpov, V.V. Saiko, Phys. Rev. C 96, 024618 (2017)

    ADS  Google Scholar 

  24. Z. Long, S. Jun, X. Wen-Jie, Z. Feng-Shou, Phys. Lett. B 767, 437 (2017)

    ADS  Google Scholar 

  25. Z.-Q. Feng, Phys. Rev. C 95, 024615 (2017)

    ADS  Google Scholar 

  26. J. Xiang, W. Nan, Chin. Phys. C 42, 104105 (2018)

    ADS  Google Scholar 

  27. C. Li, Phys. Rev. C 93, 014618 (2016)

    ADS  Google Scholar 

  28. GRAZING_9, A Fortran program for estimating reactions in collision between Heavy Nuclei http://personalpages.to.infn.it/~nanni/grazing/

  29. A. Winther, Nucl. Phys. A 572, 191 (1994)

    ADS  Google Scholar 

  30. A. Winther, Nucl. Phys. A 594, 203 (1995)

    ADS  Google Scholar 

  31. V.I. Zagrebaev et al., NRV Web Knowledge on Nuclear Physics, http://nrv.jinr.ru/nrv/

  32. LISE code, http://groups.nscl.msu.edu/lise/

  33. Nuclear structure and decay data, https://www.nndc.bnl.gov/nudat3

  34. Yu.E. Penionzhkevich et al., Eur. Phys. J. A 31, 185 (2007)

    ADS  Google Scholar 

  35. V. Zagrebaev, Lect. Notes Phys. 963, 1 (2019)

    ADS  Google Scholar 

  36. L. Corradi, J. Phys. Conf. Ser. 282, 012005 (2011)

    Google Scholar 

  37. V. Zagrebaev, W. Greiner, Phys. Rev. Lett. 101, 122701 (2008)

    ADS  Google Scholar 

  38. A. Gobbi, W. Norenberg, in Heavy Ion Collisions. ed. by R. Bock (North-Holland, Amsterdam, 1980)

    Google Scholar 

  39. C. Li, Phys. Lett. B 776, 278 (2018)

    ADS  Google Scholar 

  40. K. Sekizawa, S. Ayik, Phys. Rev. C 102, 014620 (2020)

    ADS  Google Scholar 

  41. V.I. Zagrebaev, V.V. Samarin, W. Greiner, Phys. Rev. C 75, 035809 (2007)

    ADS  Google Scholar 

  42. D. Valiolda, D. Janseitov, V. Melezhik, Eur. Phys. J. A 58, 34 (2022)

    ADS  Google Scholar 

  43. A.K. Azhibekov, V.V. Samarin, Chin. J. Phys. 65, 292 (2020)

    Google Scholar 

  44. A.K. Azhibekov, V.V. Samarin, Bull. Russ. Acad. Sci. Phys. 86(9), 1092 (2022)

    Google Scholar 

  45. V.V. Samarin, M.A. Naumenko, Phys. At. Nucl. 85(6), 880 (2022)

    Google Scholar 

  46. V.V. Samarin, Phys. At. Nucl. 81, 486 (2018)

    Google Scholar 

  47. Heterogeneous platform «HybriLIT», http://hybrilit.jinr.ru/

  48. Chart of nucleus shape and size parameters, http://cdfe.sinp.msu.ru/services/radchart/radmain.html.

  49. A.K. Azhibekov et al., Eurasian J. Phys. Funct. Mater. 3, 307 (2019)

    Google Scholar 

  50. H. Grawe, K. Langanke, G. Martınez-Pinedo, Rep. Prog. Phys. 70, 1525 (2007)

    ADS  Google Scholar 

  51. K.V. Samarin, Bull. Russ. Acad. Sci. Phys. 77, 416 (2013)

    Google Scholar 

  52. A.J. Pacheco et al., Phys. Rev. C 45, 2861 (1992)

    ADS  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP19577048). The authors thank the staff of Sector No. 3 of the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research for their help in conducting the experiment. We are grateful to N.K. Skobelev and V.V. Samarin for useful discussions. We also thank the HybriLIT team for the opportunity of using the computational resources of the HybriLIT cluster and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Azhibekov.

Additional information

Communicated by Alessia Di Pietro

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhibekov, A.K., Lukyanov, S.M., Shakhov, A.V. et al. Neutron transfer in the 48Ca + 197Au reaction. Eur. Phys. J. A 59, 278 (2023). https://doi.org/10.1140/epja/s10050-023-01192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01192-4

Navigation