Skip to main content
Log in

Unusual behavior in the systematics of \(\alpha \)-preformation factors above Z, \(N=50\) doubly magic shell closures

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The systematics of \(\alpha \)-preformation factor (\(P_\alpha \)) above the Z, \(N=50\) shell closures is investigated with the dynamical double-folding potential (DDFP) which incorporates the nuclear medium effect in \(\alpha \) decay. With the accuracy of the DDFP verified in the half-life calculation, the \(P_\alpha \) factors are deduced from the available experimental \(\alpha \)-decay energies and half-lives. The result suggests that the relative \(\alpha \)-reduced width \(W_\alpha \) of \(^{104}\)Te is 6.54, which stands with the experimental conclusion \(W_\alpha >5\) [Phys. Rev. Lett. 121, 182501, 2018], and is very close to the theoretical value 6.92 from the microscopic quartetting wavefunction approach (QWA) [Phys. Rev. C 101, 024316, 2020]. The \(P_\alpha \) variations above Z, \(N=50\) are found to show an unusual behavior which is different from the known \(P_\alpha \) systematics above the \(Z=82\), \(N=126\) shell closures. The correlations of \(P_\alpha \) factors with different types of two-nucleon correlated interactions are analyzed in detail, which suggests that the large enhancement of the proton–neutron interaction along with its positive correlation with the \(P_\alpha \) value probably accounts for the unusual \(P_\alpha \) systematics in this region. All these indications imply a likely predominant role played by the proton–neutron correlation against the pairing correlations in contributing to the \(\alpha \)-cluster formation for nuclei in the \(^{100}\)Sn neighboring region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited [Authors’ comment: The relevant data in the figures of this paper are available upon request].

References

  1. I.G. Darby, R.K. Grzywacz, J.C. Batchelder, C.R. Bingham, L. Cartegni, C.J. Gross et al., Phys. Rev. Lett. 105, 162502 (2010)

    ADS  Google Scholar 

  2. S.N. Liddick, R. Grzywacz, C. Mazzocchi, R.D. Page, K.P. Rykaczewski, J.C. Batchelder et al., Phys. Rev. Lett. 97, 082501 (2006)

    ADS  Google Scholar 

  3. D. Seweryniak, K. Starosta, C.N. Davids, S. Gros, A.A. Hecht, N. Hoteling, T.L. Khoo, K. Lagergren et al., Phys. Rev. C 73, 061301(R) (2006)

    ADS  Google Scholar 

  4. T. Morris, J. Simonis, S. Stroberg, C. Stumpf, G. Hagen, J. Holt, G. Jansen, T. Papenbrock, R. Roth, A. Schwenk, Phys. Rev. Lett. 120, 152503 (2018)

    ADS  Google Scholar 

  5. R.F. Casten, R.B. Cakirli, Phys. Scr. 91, 033004 (2016)

    ADS  Google Scholar 

  6. S. Frauendorf, A. Macchiavelli, Prog. Part. Nucl. Phys. 78, 24 (2014)

    ADS  Google Scholar 

  7. K. Auranen, D. Seweryniak, M. Albers, A.D. Ayangeakaa, S. Bottoni, M.P. Carpenter et al., Phys. Rev. Lett. 121, 182501 (2018)

    ADS  Google Scholar 

  8. M.A. Souza, H. Miyake, T. Borello-Lewin, C.A. da Rocha, C. Frajuca, Phys. Lett. B 793, 8 (2019)

    ADS  Google Scholar 

  9. D. Bai, Z. Ren, Eur. Phys. J. A 54, 220 (2018)

    ADS  Google Scholar 

  10. P. Mohr, Eur. Phys. J. A 31, 23 (2007)

    ADS  Google Scholar 

  11. M. Patial, R.J. Liotta, R. Wyss, Phys. Rev. C 93, 054326 (2016)

    ADS  Google Scholar 

  12. V.V. Baran, D.S. Delion, Phys. Rev. C 94, 034319 (2016)

    ADS  Google Scholar 

  13. R.M. Clark, A.O. Macchiavelli, H.L. Crawford, P. Fallon, D. Rudolph, A. Såmark-Roth, C.M. Campbell, M. Cromaz, C. Morse, C. Santamaria, Phys. Rev. C 101, 034313 (2020)

    ADS  Google Scholar 

  14. N. Wan, J. Fan, Phys. Rev. C 104, 064320 (2021)

    ADS  Google Scholar 

  15. G. Gamow, Z. Phys. 51, 204 (1928)

    ADS  Google Scholar 

  16. R.W. Gurney, E.U. Condon, Nature (Lond.) 122, 439 (1928)

    ADS  Google Scholar 

  17. J. Tanaka, Z. Yang, S. Typel, S. Adachi, S. Bai, P.V. Beek et al., Science 371, 260 (2021)

    ADS  Google Scholar 

  18. G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, Z. Ren, A. Tohsaki, C. Xu, T. Yamada, B. Zhou, Phys. Rev. C 90, 034304 (2014)

    ADS  Google Scholar 

  19. S. Yang, C. Xu, G. Röpke, P. Schuck, Z. Ren, Yasuro Funaki et al., Phys. Rev. C 101, 024316 (2020)

    ADS  Google Scholar 

  20. C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, B. Zhou, Phys. Rev. C 95, 061306(R) (2017)

    ADS  Google Scholar 

  21. C. Xu, Z. Ren, G. Röpke, P. Schuck, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, B. Zhou, Phys. Rev. C 93, 011306(R) (2016)

    ADS  Google Scholar 

  22. Z. Ren, B. Zhou, Front. Phys. 13, 132110 (2018)

    ADS  Google Scholar 

  23. D.S. Delion, A. Dumitrescu, V.V. Baran, Phys. Rev. C 97, 064303 (2018)

    ADS  Google Scholar 

  24. D.S. Delion, A. Dumitrescu, Phys. Rev. C 102, 014327 (2020)

    ADS  Google Scholar 

  25. D. Deng, Z. Ren, N. Wang, Phys. Lett. B 795, 554 (2019)

    ADS  Google Scholar 

  26. D. Deng, Z. Ren, Phys. Rev. C 96, 064306 (2017)

    ADS  Google Scholar 

  27. D. Deng, Z. Ren, Nucl. Sci. Tech. 27, 150 (2016)

    Google Scholar 

  28. Y. Qian, Z. Ren, Phys. Lett. B 777, 298 (2018)

    ADS  Google Scholar 

  29. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    ADS  Google Scholar 

  30. Z. Wang, D. Bai, Z. Ren, Phys. Rev. C 105, 024327 (2022)

    ADS  Google Scholar 

  31. C. Xu, Z. Ren, Phys. Rev. C 74, 037302 (2006)

    ADS  Google Scholar 

  32. C. Xu, Z. Ren, Phys. Rev. C 76, 027303 (2007)

    ADS  Google Scholar 

  33. D. Ni, Z. Ren, Phys. Rev. C 80, 014314 (2009)

    ADS  Google Scholar 

  34. P. Mohr, Eur. Phys. J. A 56, 127 (2020)

    ADS  Google Scholar 

  35. O.I. Davydovska, V.Y. Denisov, V.A. Nesterov, Nucl. Phys. A 989, 214 (2019)

    ADS  Google Scholar 

  36. W.M. Seif, A.M.H. Abdelhady, A. Adel, J. Phys. G Nucl. Part. Phys. 45, 115101 (2018)

    ADS  Google Scholar 

  37. W.M. Seif, A.M.H. Abdelhady, A. Adel, Phys. Rev. C 101, 064305 (2020)

    ADS  Google Scholar 

  38. D.T. Khoa, Phys. Rev. C 63, 034007 (2001)

    ADS  Google Scholar 

  39. D.T. Khoa, G. Satchler, W. von Oertzen, Phys. Rev. C 56, 954 (1997)

    ADS  Google Scholar 

  40. D. Ni, Z. Ren, Phys. Rev. C 83, 014310 (2011)

    ADS  Google Scholar 

  41. D. Khoa, W. von Oertzen, Phys. Lett. B 304, 8 (1993)

    ADS  Google Scholar 

  42. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. Lett. 76, 380 (1996)

    ADS  Google Scholar 

  43. K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Academic Press, New York, 1977)

    Google Scholar 

  44. S.A. Gurvitz, G. Kalbermann, Phys. Rev. Lett. 59, 262 (1987)

  45. N.G. Kelkar, H.M. Castañeda, Phys. Rev. C 76, 064605 (2007)

    ADS  Google Scholar 

  46. N.G. Kelkar, M. Nowakowski, J. Phys. G Nucl. Part. Phys. 43, 105102 (2016)

    ADS  Google Scholar 

  47. W.M. Seif, M. Shalaby, M.F. Alrakshy, Phys. Rev. C 84, 064608 (2011)

    ADS  Google Scholar 

  48. H.F. Zhang, G. Royer, Phys. Rev. C 77, 054318 (2008)

    ADS  Google Scholar 

  49. Y. Qian, Z. Ren, Sci. China Phys. Mech. Astron. 56, 1520 (2013)

    ADS  Google Scholar 

  50. D.N. Poenaru, R.A. Gherghescu, Eur. Phys. Lett. 118, 22001 (2017)

    ADS  Google Scholar 

  51. D.N. Poenaru, R.A. Gherghescu, Phys. Rev. C 97, 044621 (2018)

    ADS  Google Scholar 

  52. N.N.D. Center, Evaluated Nuclear Structure Data File (2023). https://www.nndc.bnl.gov/ensdf

  53. M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021)

    ADS  Google Scholar 

  54. F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, G. Audi, Chin. Phys. C 45, 030001 (2021)

    ADS  Google Scholar 

  55. P. Möller, A. Sierk, T. Ichikawa, H. Sagawac, Atom. Data Nucl. Data Tables 109–110, 1 (2016)

    ADS  Google Scholar 

  56. E. Roeckl, R. Kirchner, O. Klepper, G. Nyman, W. Reisdorf, D. Schardt, K. Wien, R. Fass, S. Mattsson, Phys. Lett. B 78, 393 (1978)

    ADS  Google Scholar 

  57. J.G. Deng, H.F. Zhang, X.D. Sun, Chin. Phys. C 46, 061001 (2022)

    ADS  Google Scholar 

  58. J.O. Rasmussen, Phys. Rev. 113, 1593 (1959)

    ADS  Google Scholar 

  59. L. Capponi, J.F. Smith, P. Ruotsalainen, C. Scholey, P. Rahkila, K. Auranen et al., Phys. Rev. C 94, 024314 (2016)

    ADS  Google Scholar 

  60. R.D. Page, P.J. Woods, R.A. Cunningham, T. Davinson, N.J. Davis, A.N. James, K. Livingston, P.J. Sellin, A.C. Shotter, Phys. Rev. C 49, 3312 (1994)

    ADS  Google Scholar 

  61. R.G. Lovas, R.J. Liotta, A. Insolia, K. Varga, D.S. Delion, Phys. Rep. 294, 265 (1998)

    ADS  Google Scholar 

  62. Y.M. Zhao, R.F. Casten, A. Arima, Phys. Rev. Lett. 85, 720 (2000)

    ADS  Google Scholar 

  63. Z.Y. Zhang, H.B. Yang, M.H. Huang, Z.G. Gan, C.X. Yuan, C. Qi et al., Phys. Rev. Lett. 126, 152502 (2021)

    ADS  Google Scholar 

  64. Z. Ren, G. Xu, Phys. Rev. C 36, 456 (1987)

    ADS  Google Scholar 

  65. Z. Ren, G. Xu, J. Phys. G Nucl. Part. Phys. 15, 465 (1989)

    ADS  Google Scholar 

  66. D.S. Delion, S.A. Ghinescu, Phys. Rev. C 105, L031301 (2022)

    ADS  Google Scholar 

  67. N. Wang, M. Liu, Xizhen Wu et al., Phys. Lett. B 734, 215 (2014)

    ADS  Google Scholar 

  68. W. Satuła, J. Dobaczewski, W. Nazarewicz, Phys. Rev. Lett. 81, 3599 (1998)

    ADS  Google Scholar 

  69. A.N. Andreyev, M. Huyse, P.V. Duppen, C. Qi, R.J. Liotta et al., Phys. Rev. Lett. 110, 242502 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 12175151, No. 12005139, No. 11947123), the Major Project of Basic and Applied Basic Research of Guangdong (Grant No. 2021B0301030006), the Steady Support Program for Higher Education Institutions of Shenzhen (Grant No. 20200810163629001, 20200817005440001), and the Natural Science Foundation of Shenzhen University (Grant No. 2019100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming Deng.

Additional information

Communicated by Chong Qi

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Ren, Z. & Wang, N. Unusual behavior in the systematics of \(\alpha \)-preformation factors above Z, \(N=50\) doubly magic shell closures. Eur. Phys. J. A 59, 226 (2023). https://doi.org/10.1140/epja/s10050-023-01138-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01138-w

Navigation