Skip to main content
Log in

Elastic Coulomb breakup analysis via different approaches

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The present study systematically investigates and compares Coulomb-breakup reactions using two different approaches: the virtual photon (Coulomb excitation) method and the Continuum Discretized Coupled Channel (CDCC) model. Specifically, we analyze Coulomb dissociation processes for a range of deuteron-induced systems, spanning from light to heavy masses, considering the electric dipole and quadrupole transitions (\(E_1\) and \(E_2\)) in Coulomb excitation (CE). The study calculates and compares the differential partial wave cross sections as well as the integrated cross sections of the two approaches. Notably, the total integrated Coulomb breakup cross sections demonstrate a good agreement between both approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper emphasizes theoretical calculations, without any experimental work. The manuscript contains a comprehensive presentation of these calculations. Further details are available upon special request.]

References

  1. F. Rybicki, N. Austern, Phys. Rev. C 6, 1525 (1972)

    Article  ADS  Google Scholar 

  2. K. Ieki, D. Sackett, A. Galonsky, C.A. Bertulani, J.J. Kruse, W.G. Lynch et al., Phys. Rev. Lett. 70, 730 (1993)

    Article  ADS  Google Scholar 

  3. D.J. Hinde, M. Dasgupta, B.R. Fulton, C.R. Morton, R.J. Wooliscroft, A.C. Berriman, K. Hagino, Phys. Rev. Lett. 89, 272701 (2002)

    Article  Google Scholar 

  4. R. Palit, P. Adrich, T. Aumann, K. Boretzky, B.V. Carlson, D. Cortina et al., Phys. Rev. C 68, 034318 (2003)

    Article  ADS  Google Scholar 

  5. T. Ye, Y. Watanabe, K. Ogata, Phys. Rev. C 80, 014604 (2009)

    Article  ADS  Google Scholar 

  6. L.F. Canto, P.R.S. Gomes, J. Lubian, L.C. Chamon, E. Crema, Nucl. Phys. A 821(1–4), 51 (2009)

    Article  ADS  Google Scholar 

  7. R. Rafiei, R. du Rietz, D.H. Luong, D.J. Hinde, M. Dasgupta, M. Evers, A. Diaz-Torres, Phys. Rev. C 81, 024601 (2010)

  8. B.V. Carlson, T. Frederico, M.S. Hussein, Phys. Lett. B 767, 53 (2017)

    Article  ADS  Google Scholar 

  9. A. Diaz-Torres, D. Quraishi, Phys. Rev. C 97, 024611 (2018)

    Article  ADS  Google Scholar 

  10. L.A. Souza, E.V. Chimanski, B.V. Carlson, Phys. Rev. C 104, 034623 (2021)

    Article  ADS  Google Scholar 

  11. T. Nakamura, N. Fukuda, T. Kobayashi, N. Aoi, H. Iwasaki, T. Kubo et al., Phys. Rev. Lett. 83, 1112 (1999)

    Article  ADS  Google Scholar 

  12. I. Tanihata, Prog. Part. Nucl. Phys. 35, 505 (1995)

    Article  ADS  Google Scholar 

  13. G. Baur, K. Hencken, D. Trautmann, Prog. Part. Nucl. Phys. 51, 487 (2003)

    Article  ADS  Google Scholar 

  14. K. Alder, A. Winther, Electromagnetic Excitation (North-Holland, Amsterdam, 1975)

    MATH  Google Scholar 

  15. C.A. Bertulani, G. Baur, Phys. Rep. 163, 299 (1988)

    Article  ADS  Google Scholar 

  16. C.A. Bertulani, Lecture Notes on Reactions with Radioactive Beams (Chap. 4) (GSI-Darmstadt, 1999)

  17. G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)

    Article  ADS  Google Scholar 

  18. C.A. Bertulani, G. Baur, Nucl. Phys. A 442, 739 (1985)

    Article  ADS  Google Scholar 

  19. Y. Sakuragi, M. Yahiro, M. Kamimura, Prog. Theor. Phys. (Kyoto) 68, 322 (1982)

    Article  ADS  Google Scholar 

  20. Y. Sakuragi, M. Yahiro, M. Kamimura, Prog. Theor. Phys. Suppl. 89, 136 (1986)

    Article  ADS  Google Scholar 

  21. Y. Iseri, M. Yahiro, M. Kamimura, Progr. Theor. Phys. Suppl. 89, 84 (1986)

    Article  ADS  Google Scholar 

  22. N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, M. Yahiro, Phys. Rep. 154, 125 (1987)

    Article  ADS  Google Scholar 

  23. R.A.D. Piyadasa, M. Kawai, M. Kamimura, M. Yahiro, Phys. Rev. C 60, 044611 (1999)

    Article  ADS  Google Scholar 

  24. I.J. Thompson, F.M. Nunes (Cambridge University Press, 2009)

  25. A.R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edn. (Princeton University Press, Princeton, NJ, 1960)

    MATH  Google Scholar 

  26. T. Matsumoto, T. Kamizato, K. Ogata, Y. Iseri, E. Hiyama, M. Kamimura, M. Yahiro, Phys. Rev. C 68, 064607 (2003)

    Article  ADS  Google Scholar 

  27. F.M. Nunes, A.M. Mukhamedzhanov, C.C. Rosa, B. Irgaziev, Nucl. Phys. A 736(3–4), 255 (2004)

    Article  ADS  Google Scholar 

  28. F. Torabi, B.V. Carlson, J. Lubian, A comparative CDCC study of deuteron-induced reactions (to be published)

  29. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  30. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  31. M.S. Hussein, R. Lichtenthäler, F.M. Nunes, I.J. Thompson, Phys. Lett. B 640, 91 (2006)

    Article  ADS  Google Scholar 

  32. Y. Kucuk, A.M. Moro, Phys. Rev. C 86, 034601 (2012)

    Article  ADS  Google Scholar 

  33. D.R. Otomar, P.R.S. Gomes, J. Lubian, L.F. Canto, M.S. Hussein, Phys. Rev. C 87, 014615 (2013)

    Article  ADS  Google Scholar 

  34. J. Rangel, J. Lubian, L.F. Canto, P.R.S. Gomes, Phys. Rev. C 93, 054610 (2016)

    Article  ADS  Google Scholar 

  35. F. Torabi, B.V. Carlson, J. Phys. G: Nucl. Part. Phys. 50, 045107 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants 2017/05660-0 and 2020/04160-6 of the São Paulo Research Foundation (FAPESP), grant 303131/2021-7 of the CNPq, and the INCT-FNA project 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Torabi.

Additional information

Communicated by Arnau Rios Huguet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, F., Carlson, B.V. Elastic Coulomb breakup analysis via different approaches. Eur. Phys. J. A 59, 192 (2023). https://doi.org/10.1140/epja/s10050-023-01106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01106-4

Navigation