Skip to main content
Log in

From imaginary to real chemical potential QCD with functional methods

  • Letter
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the quality of the extrapolation procedure employed in Ref. [1] to extract the crossover line at real chemical potential from lattice data at imaginary potential. To this end we employ a functional approach that does not suffer from the sign problem. We utilize a well-studied combination of lattice Yang–Mills theory with a truncated set of Dyson–Schwinger equations in Landau gauge for \(2 + 1\) quark flavors. This system predicts a critical endpoint at moderate temperatures and rather large (real) chemical potential with a curvature of the pseudo-critical transition line comparable to recent lattice extrapolations. We determine the light quark condensate and chiral susceptibility at imaginary chemical potentials and perform an analytic continuation along the lines described in Borsányi et al. (Phys Rev Lett 125:052001. https://doi.org/10.1103/PhysRevLett.125.052001. arXiv:2002.02821 [hep-lat], 2020). We find that the analytically continued crossover line agrees very well (within one percent) with the explicitly calculated one for chemical potentials up to about 80 % of the one of the critical end point. The method breaks down in the region where the chiral susceptibility as a function of the condensate cannot any longer be well described by a polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are stored in a local repository and are available on request from christian.fischer@theo.physik.uni-giessen.de].

Notes

  1. We work in Euclidean space-time with positive metric signature (++++). The Hermitian \(\gamma \)-matrices satisfy \(\{\gamma _{\nu }, \gamma _{\rho }\} = 2 \delta _{\nu \rho }\).

  2. In principle, one could also determine the derivative directly, but this is about an order of magnitude more involved in terms of CPU-time. We have tested the quality of the finite difference method in comparable cases and found it to be accurate on the sub-percent level.

References

  1. S. Borsányi et al., QCD Crossover at Finite Chemical Potential from Lattice Simulations, Phys. Rev. Lett. 125, 052001 (2020). https://doi.org/10.1103/physRevLett.125.052001. arXiv:2002.02821 [hep-lat]

  2. A. Bzdak et al., Mapping the phases of quantum chromodynamics with beam energy scan. Phys. Rep. 853, 1 (2020), https://doi.org/10.1016/j.physrep.2020.01.005. arXiv:1906.00936 [nucl-th]

  3. P. Salabura, and J. Stroth, Dilepton radiation from strongly interacting systems, Prog. Part. Nucl. Phys. 120, 103869 (2021). https://doi.org/10.1016/j.ppnp.2021.103869. arXiv:2005.14589 [nucl-ex]

  4. B. Friman et al., eds., The CBM Physics Book: Compressed Baryonic Matter in Laboratory Experiments, Lecture Notes in Physics No. 814 (Springer, New York, 2011) https://doi.org/10.1007/978-3-642-13293-3

  5. K. Nagata, Finite-density lattice QCD and sign problem: Current status and open problems, Prog. Part. Nucl. Phys. 127, 103991 (2022) https://doi.org/10.1016/j.ppnp.2022.103991. arXiv:2108.12423 [hep-lat]

  6. A. Hasenfratz, D. Toussaint, Canonical ensembles and nonzero density quantum chromodynamics. Nucl. Phys. B 371, 539 (1992). https://doi.org/10.1016/0550-3213(92)90247-9

    Article  ADS  MathSciNet  Google Scholar 

  7. Z. Fodor, S. D. Katz, A New method to study lattice QCD at finite temperature and chemical potential, Phys. Lett. B 534, 87 (2002a). https://doi.org/10.1016/S0370-2693(02)01583-6. arXiv:hep-lat/0104001

  8. Z. Fodor, S. D. Katz, Lattice determination of the critical point of QCD at finite T and mu, JHEP 03, 014 (2002). https://doi.org/10.1088/1126-6708/2002/03/014. arXiv:hep-lat/0106002

  9. M. Giordano, K. Kapas, S. D. Katz, D. Nogradi, A. Pasztor, New approach to lattice QCD at finite density; results for the critical end point on coarse lattices. JHEP 05, 088 (2020). https://doi.org/10.1007/JHEP05(2020)088. arXiv:2004.10800 [hep-lat]

  10. C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, C. Schmidt, L. Scorzato, The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66, 074507 (2002). https://doi.org/10.1103/PhysRevD.66.074507. arXiv:hep-lat/0204010

  11. R. V. Gavai, S. Gupta, QCD at finite chemical potential with six time slices, Phys. Rev. D 78, 114503 (2008). https://doi.org/10.1103/PhysRevD.78.114503. arXiv:0806.2233 [hep-lat]

  12. S. Borsanyi, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabo, QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order \(mu^2\), JHEP 08, 053, https://doi.org/10.1007/JHEP08(2012)053. arXiv:1204.6710 [hep-lat]

  13. A. Bazavov et al., The QCD Equation of State to \({\cal{O}}(\mu _B^6)\) from Lattice QCD, Phys. Rev. D 95, 054504 (2017). https://doi.org/10.1103/PhysRevD.95.054504. arXiv:1701.04325 [hep-lat]

  14. M. Giordano, K. Kapas, S. D. Katz, D. Nogradi, and A. Pasztor, Radius of convergence in lattice QCD at finite \(\mu _B\) with rooted staggered fermions, Phys. Rev. D 101, 074511 (2020b), [Erratum: Phys.Rev.D 104, 119901 (2021)]. https://doi.org/10.1103/PhysRevD.101.074511. arXiv:1911.00043 [hep-lat]

  15. A. Bazavov et al. (HotQCD), Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795, 15 (2019a). https://doi.org/10.1016/j.physletb.2019.05.013. arXiv:1812.08235 [hep-lat]

  16. A. Bazavov et al., Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data. Phys. Rev. D 101, 074502 (2020).https://doi.org/10.1103/PhysRevD.101.074502. arXiv:2001.08530 [hep-lat]

  17. D. Bollweg, J. Goswami, O. Kaczmarek, F. Karsch, S. Mukherjee, P. Petreczky, C. Schmidt, and P. Scior (HotQCD), Taylor expansions and Padé approximants for cumulants of conserved charge fluctuations at nonvanishing chemical potentials. Phys. Rev. D 105, 074511 (2022). https://doi.org/10.1103/PhysRevD.105.074511. arXiv:2202.09184 [hep-lat]

  18. C. Ratti, Equation of state for QCD from lattice simulations. Prog. Part. Nucl. Phys. 129, 104007 (2023). https://doi.org/10.1016/j.ppnp.2022.104007

    Article  Google Scholar 

  19. P. de Forcrand, O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642, 290 (2002). https://doi.org/10.1016/S0550-3213(02)00626-0. arXiv:hep-lat/0205016

  20. S. Borsányi et al., Lattice QCD Equation of State at Finite Chemical Potential from an Alternative Expansion Scheme. Phys. Rev. Lett. 126, 232001 (2021). https://doi.org/10.1103/PhysRevLett.126.232001. arXiv:2102.06660 [hep-lat]

  21. P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, G. Nicotra, C. Schmidt, S. Singh, K. Zambello, and F. Ziesché, Contribution to understanding the phase structure of strong interaction matter: Lee-Yang edge singularities from lattice QCD, Phys. Rev. D 105, 034513 (2022). https://doi.org/10.1103/PhysRevD.105.034513. arXiv:2110.15933 [hep-lat]

  22. S. Borsanyi, Z. Fodor, M. Giordano, J. N. Guenther, S. D. Katz, A. Pasztor, C. H. Wong, Equation of state of a hot-and-dense quark gluon plasma: lattice simulations at real \(\mu _B\) vs. extrapolations, (2022a). arXiv:2208.05398 [hep-lat]

  23. S. Borsanyi, J. N. Guenther, R. Kara, Z. Fodor, P. Parotto, A. Pasztor, C. Ratti, and K. K. Szabo, Resummed lattice QCD equation of state at finite baryon density: Strangeness neutrality and beyond, Phys. Rev. D 105, 114504 (2022b). https://doi.org/10.1103/PhysRevD.105.114504. arXiv:2202.05574 [hep-lat]

  24. C. S. Fischer, QCD at finite temperature and chemical potential from Dyson–Schwinger equations, Prog. Part. Nucl. Phys. 105, 1 (2019). https://doi.org/10.1016/j.ppnp.2019.01.002. arXiv:1810.12938 [hep-ph]

  25. C. S. Fischer, J. Luecker, and C. A. Welzbacher, Phase structure of three and four flavor QCD, Phys. Rev. D 90, 034022 (2014). https://doi.org/10.1103/PhysRevD.90.034022. arXiv:1405.4762 [hep-ph]

  26. P. Isserstedt, M. Buballa, C. S. Fischer, and P. J. Gunkel, Baryon number fluctuations in the QCD phase diagram from Dyson–Schwinger equations, Phys. Rev. D 100, 074011 (2019). https://doi.org/10.1103/PhysRevD.100.074011. arXiv:1906.11644 [hep-ph]

  27. W.-j. Fu, J. M. Pawlowski, and F. Rennecke, QCD phase structure at finite temperature and density, Phys. Rev. D 101, 054032 (2020). https://doi.org/10.1103/PhysRevD.101.054032. arXiv:1909.02991 [hep-ph]

  28. F. Gao and J. M. Pawlowski, QCD phase structure from functional methods, Phys. Rev. D 102, 034027 (2020). https://doi.org/10.1103/PhysRevD.102.034027. arXiv:2002.07500 [hep-ph]

  29. F. Gao and J. M. Pawlowski, Chiral phase structure and critical end point in QCD, Phys. Lett. B 820, 136584 (2021). https://doi.org/10.1016/j.physletb.2021.136584. arXiv:2010.13705 [hep-ph]

  30. P. J. Gunkel and C. S. Fischer, Locating the critical endpoint of QCD: Mesonic backcoupling effects, Phys. Rev. D 104, 054022 (2021). https://doi.org/10.1103/PhysRevD.104.054022. arXiv:2106.08356 [hep-ph]

  31. J. Braun, L. M. Haas, F. Marhauser, and J. M. Pawlowski, Phase Structure of Two-Flavor QCD at Finite Chemical Potential, Phys. Rev. Lett. 106, 022002 (2011). https://doi.org/10.1103/PhysRevLett.106.022002. arXiv:0908.0008 [hep-ph]

  32. C. S. Fischer, J. Luecker, and J. M. Pawlowski, Phase structure of QCD for heavy quarks, Phys. Rev. D 91, 014024 (2015). https://doi.org/10.1103/PhysRevD.91.014024. arXiv:1409.8462 [hep-ph]

  33. C. S. Fischer, A. Maas, and J. A. Mueller, Chiral and deconfinement transition from correlation functions: SU(2) vs. SU(3), Eur. Phys. J. C 68, 165 (2010) https://doi.org/10.1140/epjc/s10052-010-1343-1. arXiv:1003.1960 [hep-ph]

  34. A. Maas, J. M. Pawlowski, L. von Smekal, and D. Spielmann, The gluon propagator close to criticality, Phys. Rev. D 85, 034037 (2012). https://doi.org/10.1103/PhysRevD.85.034037. arXiv:1110.6340 [hep-lat]

  35. G. Eichmann, C. S. Fischer, and C. A. Welzbacher, Baryon effects on the location of QCD’s critical end point, Phys. Rev. D 93, 034013 (2016). https://doi.org/10.1103/PhysRevD.93.034013. arXiv:1509.02082 [hep-ph]

  36. J. S. Ball and T.-W. Chiu, Analytic properties of the vertex function in gauge theories. I, Phys. Rev. D 22, 2542 (1980). https://doi.org/10.1103/PhysRevD.22.2542

  37. P. J. Gunkel, C. S. Fischer, and P. Isserstedt, Quarks and light (pseudo-)scalar mesons at finite chemical potential, Eur. Phys. J. A 55, 169 (2019). https://doi.org/10.1140/epja/i2019-12868-1. arXiv:1907.08110 [hep-ph]

  38. P. Isserstedt, Thermodynamics of strong-interaction matter: On the phase structure and thermodynamics of quantum chromodynamics with Dyson–Schwinger equations, Ph.D. thesis, Giessen University, Germany (2021). https://doi.org/10.22029/jlupub-310

  39. C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, and F. Sanfilippo, Curvature of the chiral pseudocritical line in qcd: Continuum extrapolated results. Phys. Rev. D 92, 054503 (2015). https://doi.org/10.1103/PhysRevD.92.054503. arXiv:1507.03571 [hep-lat]

  40. R. Bellwied et al., The QCD phase diagram from analytic continuation, Phys. Lett. B 751, 559 (2015). https://doi.org/10.1016/j.physletb.2015.11.011. arXiv:1507.07510 [hep-lat]

  41. C. Bonati, M. D’Elia, F. Negro, F. Sanfilippo, and K. Zambello, Curvature of the pseudocritical line in qcd: Taylor expansion matches analytic continuation. Phys. Rev. D 98, 054510 (2018). https://doi.org/10.1103/PhysRevD.98.054510. arXiv:1805.02960 [hep-lat]

  42. A. Bazavov et al. (HotQCD), Chiral crossover in qcd at zero and non-zero chemical potentials, Phys. Lett. B 795, 15 (2019b). https://doi.org/10.1016/j.physletb.2019.05.013. arXiv:1812.08235 [hep-lat]

  43. D. Binosi, J. Collins, C. Kaufhold, and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180, 1709 (2009). https://doi.org/10.1016/j.cpc.2009.02.020. arXiv:0811.4113 [hep-ph]

Download references

Acknowledgements

We thank both, Jana N. Guenther and Philipp Isserstedt for enlightening discussions. We furthermore thank Jana N. Guenther for providing the lattice data for comparison and Philipp Isserstedt for crosschecks of the numerical code at an early stage of this work. This work has been supported by the Helmholtz Graduate School for Hadron and Ion Research (HGS-HIRe) for FAIR, the GSI Helmholtzzentrum für Schwerionenforschung and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Collaborative Research Center TransRegio CRC-TR 211 “Strong-interaction matter under extreme conditions”. This work is furthermore part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement STRONG - 2020 - No 824093. Feynman diagrams were drawn with JaxoDraw [43].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian S. Fischer.

Additional information

Communicated by Carsten Urbach

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernhardt, J., Fischer, C.S. From imaginary to real chemical potential QCD with functional methods. Eur. Phys. J. A 59, 181 (2023). https://doi.org/10.1140/epja/s10050-023-01098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01098-1

Navigation