Skip to main content
Log in

Vector meson-nucleon scattering length \(|\alpha _{VN}|\) and trace anomalous energy contribution to the nucleon mass \(T_{A}\)

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The interaction of vector meson with nucleon, vector meson-nucleon scattering length \(|\alpha _{VN}|\), is an important component of the study of hadronic interactions. Nowadays many scattering length values have been reported using the recent photoproduction experiment data or quasidata. In addition, the study of trace anomalous energy contribution to the proton mass is also a hot topic in non-perturbative QCD and hadron physics. In this work, we established the relationship between the scattering length of the vector meson-proton \(|\alpha _{Vp}|\) and the trace anomaly contribution of the proton mass \(T_{A}\). With the scattering length values extracted by using the Vector Meson Dominance model, we obtained the trace anomaly contribution of the proton mass \(T_{A}\) = (19.0\(\%\) ± 0.8\(\%\)), which is of similar order of magnitude as the 23\(\%\) given by Lattice QCD calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All mentioned data and the estimated results are clearly presented in the main text and the tables].

References

  1. J. Sakurai, Ann. Phys. 11, 1 (1960). https://doi.org/10.1016/0003-4916(60)90126-3

    Article  ADS  Google Scholar 

  2. M. Gell-Mann, F. Zachariasen, Phys. Rev. 124, 953 (1961). https://doi.org/10.1103/PhysRev.124.953

    Article  ADS  MathSciNet  Google Scholar 

  3. M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 706, 431 (2002). https://doi.org/10.1016/S0375-9474(02)00868-0. note [Erratum: Nucl.Phys.A 765, 431–496 (2006), Erratum: Nucl.Phys.A 765, 495–495 (2006)], arXiv:nucl-th/0112052

    Article  ADS  Google Scholar 

  4. A.I. Titov, T. Nakano, S. Date, Y. Ohashi, Phys. Rev. C 76, 048202 (2007). https://doi.org/10.1103/PhysRevC.76.048202. arXiv:hep-ph/0703227

    Article  ADS  Google Scholar 

  5. I.I. Strakovsky et al., Phys. Rev. C 91, 045207 (2015). https://doi.org/10.1103/PhysRevC.91.045207. arXiv:1407.3465 [nucl-ex]

    Article  ADS  Google Scholar 

  6. I. Strakovsky, D. Epifanov, L. Pentchev, Phys. Rev. C 101, 042201 (2020). https://doi.org/10.1103/PhysRevC.101.042201. arXiv:1911.12686 [hep-ph]

    Article  ADS  Google Scholar 

  7. I.I. Strakovsky, L. Pentchev, A. Titov, Phys. Rev. C 101, 045201 (2020). https://doi.org/10.1103/PhysRevC.101.045201. arXiv:2001.08851 [hep-ph]

    Article  ADS  Google Scholar 

  8. L. Pentchev, I.I. Strakovsky, Eur. Phys. J. A 57, 56 (2021). https://doi.org/10.1140/epja/s10050-021-00364-4. arXiv:2009.04502 [hep-ph]

    Article  ADS  Google Scholar 

  9. X.-Y. Wang, F. Zeng, I.I. Strakovsky, Phys. Rev. C 106, 015202 (2022). https://doi.org/10.1103/PhysRevC.106.015202. arXiv:2205.07661 [hep-ph]

    Article  ADS  Google Scholar 

  10. X.-Y. Wang, F. Zeng, Q. Wang, L. Zhang, Sci. China Phys. Mech. Astron. 66, 232012 (2023). https://doi.org/10.1007/s11433-022-2024-9. arXiv:2206.09170 [nucl-th]

    Article  ADS  Google Scholar 

  11. C. Han, W. Kou, R. Wang, X. Chen, Phys. Rev. C 107, 015204 (2023). https://doi.org/10.1103/PhysRevC.107.015204. arXiv:2210.11276 [hep-ph]

    Article  ADS  Google Scholar 

  12. I.I. Strakovsky, W.J. Briscoe, L. Pentchev, A. Schmidt, Phys. Rev. D 104, 074028 (2021). https://doi.org/10.1103/PhysRevD.104.074028. arXiv:2108.02871 [hep-ph]

    Article  ADS  Google Scholar 

  13. R. Wang, J. Evslin, X. Chen, Eur. Phys. J. C 80, 507 (2020). https://doi.org/10.1140/epjc/s10052-020-8057-9. arXiv:1912.12040 [hep-ph]

    Article  ADS  Google Scholar 

  14. W. Kou, R. Wang, X. Chen, Eur. Phys. J. A 58, 155 (2022). https://doi.org/10.1140/epja/s10050-022-00810-x. arXiv:2103.10017 [hep-ph]

    Article  ADS  Google Scholar 

  15. X.-D. Ji, Phys. Rev. D 52, 271 (1995). https://doi.org/10.1103/PhysRevD.52.271. arXiv:hep-ph/9502213

    Article  ADS  Google Scholar 

  16. R. L. Workman, Others ( Particle Data Group), PTEP 2022, 083C01 (2022) https://doi.org/10.1093/ptep/ptac097

  17. O. Gryniuk, S. Joosten, Z.-E. Meziani, M. Vanderhaeghen, Phys. Rev. D 102, 014016 (2020). https://doi.org/10.1103/PhysRevD.102.014016. arXiv:2005.09293 [hep-ph]

    Article  ADS  Google Scholar 

  18. X.-D. Ji, Phys. Rev. Lett. 74, 1071 (1995). https://doi.org/10.1103/PhysRevLett.74.1071. arXiv:hep-ph/9410274

    Article  ADS  Google Scholar 

  19. A.J. Buras, Rev. Mod. Phys. 52, 199 (1980). https://doi.org/10.1103/RevModPhys.52.199

    Article  ADS  Google Scholar 

  20. D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, Eur. Phys. J. C 9, 459 (1999). https://doi.org/10.1007/s100529900047. arXiv:hep-ph/9901375

    Article  ADS  Google Scholar 

  21. D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105 (1996). https://doi.org/10.3254/978-1-61499-215-8-105. arXiv:nucl-th/9601029

    Article  Google Scholar 

  22. A.F. Krutov, R.G. Polezhaev, V.E. Troitsky, Phys. Rev. D 93, 036007 (2016). https://doi.org/10.1103/PhysRevD.93.036007. arXiv:1602.00907 [hep-ph]

    Article  ADS  Google Scholar 

  23. M.S. Bhagwat, P. Maris, Phys. Rev. C 77, 025203 (2008). https://doi.org/10.1103/PhysRevC.77.025203. arXiv:nucl-th/0612069

    Article  ADS  Google Scholar 

  24. H.R. Grigoryan, A.V. Radyushkin, Phys. Rev. D 76, 095007 (2007). https://doi.org/10.1103/PhysRevD.76.095007. arXiv:0706.1543 [hep-ph]

    Article  ADS  Google Scholar 

  25. M.E. Peskin, Nucl. Phys. B 156, 365 (1979). https://doi.org/10.1016/0550-3213(79)90199-8

    Article  ADS  Google Scholar 

  26. D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovev, Phys. Lett. B 389, 595 (1996). https://doi.org/10.1016/S0370-2693(96)01321-4. arXiv:hep-ph/9605448

    Article  ADS  Google Scholar 

  27. T. Ishikawa et al., Phys. Rev. C 101, 052201 (2020). https://doi.org/10.1103/PhysRevC.101.052201. arXiv:1904.02797 [nucl-ex]

    Article  ADS  Google Scholar 

  28. C. Wu et al., Eur. Phys. J. A 23, 317 (2005). https://doi.org/10.1140/epja/i2004-10093-9

    Article  ADS  Google Scholar 

  29. H. Seraydaryan et al., CLAS. Phys. Rev. C 89, 055206 (2014). https://doi.org/10.1103/PhysRevC.89.055206. arXiv:1308.1363 [hep-ex]

    Article  ADS  Google Scholar 

  30. Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, Z. Liu, Phys. Rev. Lett. 121, 212001 (2018). https://doi.org/10.1103/PhysRevLett.121.212001. arXiv:1808.08677 [hep-lat]

    Article  ADS  Google Scholar 

  31. A. Accardi et al., Eur. Phys. J. A 52, 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9. arXiv:1212.1701 [nucl-ex]

    Article  ADS  Google Scholar 

  32. X. Chen, Proceedings, 26th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2018): Port Island, Kobe, Japan, April 16-20, 2018, PoS DIS2018, 170 (2018). https://doi.org/10.22323/1.316.0170 . arXiv:1809.00448 [nucl-ex]

  33. X. Chen, F.-K. Guo, C.D. Roberts, R. Wang, Few Body Syst. 61, 43 (2020). https://doi.org/10.1007/s00601-020-01574-0. arXiv:2008.00102 [hep-ph]

    Article  ADS  Google Scholar 

  34. D. P. Anderle et al., (2021), arXiv:2102.09222 [nucl-ex]

Download references

Acknowledgements

We thank XiaoYun Wang for the fruitful discussions. This work is supported by the International Partnership Program of the Chinese Academy of Sciences under the Grant no. 016GJHZ2022054FN, the Strategic Priority Research Program of Chinese Academy of Sciences under the Grant No. XDB34030301, the National Natural Science Foundation of China No. 12005266 and Guangdong Major Project of Basic and Applied Basic Research No. 2020B0301030008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xurong Chen.

Additional information

Communicated by Andre Peshier.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Kou, W., Wang, R. et al. Vector meson-nucleon scattering length \(|\alpha _{VN}|\) and trace anomalous energy contribution to the nucleon mass \(T_{A}\). Eur. Phys. J. A 59, 118 (2023). https://doi.org/10.1140/epja/s10050-023-01033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01033-4

Navigation