Skip to main content
Log in

Branching ratios and decay widths of the main, hidden and open charm channels of tetraquark state

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

\(J^{pc}=\) \(0^{++}\) and \(2^{++}\) states of all charm tetraquark (\([cc][\bar{c}\bar{c}]\)) are investigated in the framework of non-relativistic QCD using diquark-antidiquark coulomb plus power potential of the type \(V_{d\bar{d}}=k_{s} \frac{\alpha _s}{r} + A r^{\nu }\) with power index \(\nu \) varying from 0.1 to 2. We have included the spin hyperfine interaction to obtain masses of \(J^{pc}=\) \(0^{++}\) and \(2^{++}\) states of all charm tetraquark. We have computed branching ratios and decay widths of the main, hidden and open charm channels of tetraquark state with the help of the potential model parameters, masses and the respective radial wave function obtained by our non-relativistic quark model. Our theoretical predictions of the masses as well as the branching ratios and decay widths at power index \(\nu \)=1 are found to be in good accordance with other available theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The article includes all the theoretical data that has been calculated or examined with other available experimental as well as theoretical data supporting the findings of this study.]

References

  1. M. Gell-Mann, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  2. G. Zweig, An SU3 model for strong interaction symmetry and it’s breaking, CERNTH-401 (1964)

  3. S.K. Choi et al., (Belle Collaboration) Phys. Rev. Lett. 91, 262001 (2003)

  4. R.J. Jaffe, Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  5. I.M. Barbour, D.K. Ponting, Nucl. Phys. B 149, 534–546 (1979)

    Article  ADS  Google Scholar 

  6. L. Heller, J.A. Tjon, Phys. Rev. 32(3), 755–763 (1985)

    ADS  Google Scholar 

  7. B. Silvestre-Brac, C. Semay, Z. Phys. C 59, 457–470 (1993)

    Article  ADS  Google Scholar 

  8. S.K. Choi et al., (Belle Collaboration) Phys. Rev. Lett. 100, 142001 (2008)

  9. R. Aaij et al., (LHCb Collaboration) Phys. Rev. Lett. 112, 222002 (2014)

  10. M. Ablikim et al., (BESIII Collaboration) Phys. Rev. Lett. 111, 242001 (2013)

  11. A. Bondar et al., (Belle Collaboration) Phys. Rev. Lett. 108, 122001 (2012)

  12. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rep. 639, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668, 1 (2016)

    Article  ADS  Google Scholar 

  14. R. Aaij et al. [LHCb Collaboration] (2020), arXiv:2006.16957 [hep-ex]

  15. M.N. Anwar et al., Eur. Phys. J. C 78, 647 (2018)

    Article  ADS  Google Scholar 

  16. R. Aaij et al., (LHCb Collaboration), Phys. Lett. B 707, 52 (2012)

  17. R. Aaij et al., (LHCb Collaboration), JHEP, 1706: 047 (2017); Erratum: [JHEP, 1710: 068 (2017)]

  18. M. Aaboud et al., (ATLAS Collaboration), Eur. Phys. J. C 77, 76 (2017)

  19. V. Khachatryan et al., (CMS Collaboration). JHEP 1409, 094 (2014)

  20. A.K. Rai, J.N. Pandya, P.C. Vinod Kumar, Nucl. Phys. A 782, 406 (2007)

    Article  ADS  Google Scholar 

  21. A.K. Rai, D.P. Rathaud, Eur. Phys. J. C 75, 462 (2015)

    Article  ADS  Google Scholar 

  22. D.P. Rathaud, A.K. Rai, Indian J. Phys. 90, 1299 (2016)

    Article  ADS  Google Scholar 

  23. D.P. Rathaud, A.K. Rai, Eur. Phys J. Plus 370, 132 (2017)

    Google Scholar 

  24. Y. Iwasaki, Prog. Theor. Phys. 54, 492–503 (1975)

    Article  ADS  Google Scholar 

  25. M. Wagner et al., J. Phys: Conf. Ser. 503, 012031 (2014)

    Google Scholar 

  26. W. Chen, Phys. Lett. B 773, 247 (2017)

    Article  ADS  Google Scholar 

  27. Z. Ghalenovi, M.M. Sorkhi, Eur. Phys. J. Plus 135, 399 (2020)

    Article  Google Scholar 

  28. A. Ali, L. Maiani, A.D. Polosa, Multiquark Hadrons (Cambridge University Press, Cambridge, 2019)

    Book  MATH  Google Scholar 

  29. V.R. Debastiani, F.S. Navarra, Chin. Phys. C 43, 013105 (2019)

    Article  ADS  Google Scholar 

  30. W. Lucha et al., Effective potential models for hadrons HEPHY-PUB 621/95 (1995)

  31. A. Martin, Phys. Lett. B 93, 338 (1980)

    Article  ADS  Google Scholar 

  32. N. Barik, S.N. Jena, Phys. Lett. B 97, 261 (1980)

    Article  ADS  Google Scholar 

  33. H.A. Bethe, E.E. Salpether, Quantum Mechanics of atoms of one-and two-electrons (Springer, Berlin, 1957)

    Book  Google Scholar 

  34. M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008)

    Article  ADS  Google Scholar 

  35. Rohit Tiwari, D.P. Rathaud, A.K. Rai. (2021) arxiv:2108.04017

  36. S. Patel, M. Shah, P.C. Vinodkumar, Mass spectra of four-quark states in the hidden charm sector. Eur. Phys. J. A 50, 131 (2014)

    Article  ADS  Google Scholar 

  37. F. Stancu, Group theory in subnuclear physics, Oxford Stud. Nucl. Phys. 19 (1996)

  38. T. Bhavsar, M. Shah, S. Patel, P.C. Vinodkumar, Masses of tetraquark states in the hidden charm sector above DD\(_*\) threshold, Nucl. Phys. A, 1000 (2020)

  39. Y. Iwasaki, Phys. Rev. Lett. 36, 1266 (1976)

    Article  ADS  Google Scholar 

  40. S. Esau et al., Phys. Rev. D 100, 074025 (2019)

  41. D. Ebert, R.N. Faustov, V.O. Galkin, W. Lucha, Phys. Rev. D 76, 114015 (2007)

    Article  ADS  Google Scholar 

  42. Ahmed Ali, Luciano Maiani, Antonio D. Polosa, Multiquark hadrons (Cambridge University Press, Cambridge, 2019)

    Book  MATH  Google Scholar 

  43. C. Becchi, J. Ferretti, A. Giachino, L. Maiani, E. Santopinto, Phys. Lett. B 811, 135952 (2020)

    Article  Google Scholar 

  44. Berestetskii, Vladimir Borisovich, Evgenii Mikhailovich Lifshitz, and Lev Petrovich Pitaevskii. Quantum Electrodynamics: Volume 4. Vol. 4. Butterworth-Heinemann, (1982)

  45. A.K. Rai, B. Patel, P.C. Vinodkumar, Phys. Rev. C 78, 55202 (2008)

    Article  ADS  Google Scholar 

  46. Particle Data Group, P.A. Zyla et al., Volume 2020, Issue 8, (August 2020), 083C01, https://doi.org/10.1093/ptep/ptaa104

  47. D. Ebert, Phys. Rev D 67, 014027 (2003). [arXiv:hep-ph/9601263v1] Scientific Lecture Notes in Physics: Vol. 78, 3rd edition (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahulbhai Mistry.

Additional information

Communicated by Eulogio Oset.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mistry, R., Majethiya, A. Branching ratios and decay widths of the main, hidden and open charm channels of tetraquark state. Eur. Phys. J. A 59, 107 (2023). https://doi.org/10.1140/epja/s10050-023-01023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01023-6

Navigation