Skip to main content

Advertisement

Log in

Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: IIb. Fission properties of BSkG2

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Large-scale models of nuclear structure are currently the only way to provide consistent datasets for the many properties of thousands of exotic nuclei that are required by nucleosynthesis simulations. In [W. Ryssens et al., Eur. Phys. J. A 58, 246 (2022)], we recently presented the new BSkG2 model based on an energy density functional of the Skyrme type. Relying on a flexible three-dimensional coordinate representation of the nucleus, the model takes into account both triaxial deformation and time-reversal symmetry breaking. BSkG2 achieves a state-of-the-art global description of nuclear ground state (g.s.) properties and reproduces in particular the known masses with a root-mean-square (rms) deviation of 678 keV. Moving beyond g.s. properties, the model also reproduces all empirical values for the primary and secondary barriers as well as isomer excitation energies of actinide nuclei with rms deviations below 500 keV, i.e. with unprecedented accuracy. Here we discuss in detail the extension of our framework to the calculation of the fission barriers of 45 actinide nuclei, including odd-mass and odd-odd systems. We focus in particular on the impact of symmetry breaking which is key to the accuracy of the model: we allow systematically for axial, reflection and time-reversal symmetry breaking. The effect of the latter on the fission properties of odd-mass and odd-odd nuclei is small, but we find that allowing for shapes with triaxial or octupole deformation, as well as shapes with both, is crucial to achieving this accuracy. The numerical accuracy of our coordinate space approach, the variety of nuclear configurations explored and the simultaneous successful description of fission properties and known masses makes BSkG2 the tool of choice for the large-scale study of nuclear structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The manuscript has data included as electronic supplementary material.

Notes

  1. For microscopic-macroscopic models an accurate description of fission barriers deteriorates the description of the masses, hence why Ref. [6] advocates using two separate models: FRDM for masses and FRLDM for fission.

  2. As for the g.s. calculations of Ref. [12], we still impose z-signature as self-consistent symmetry which implies that \(\beta _{\ell m}\) vanishes if m is odd.

  3. We note that the tables of Ref. [88] and [89] report on deformation parameters that characterize the surface of the nuclear shape. These are not equal to our \(\beta _{\ell m,c}\), which characterize the shape of the nuclear volume, see the discussion in Refs. [87, 90] and references therein. For this reason, the experimental values for the \(\beta _{\ell m,c}\) quoted in the text are charge multipole deformations that we consistently calculated from the electric transition moments [91] that are also provided by these references.

  4. The total energy, on which the construction of the LEP is based, is a smooth function as seen on the top panel of Fig. 3. Its decomposition is not: the discrete steps in \(\beta _{22}\) of the LEP are visible in the non-smooth parts of the LEP curves in Fig. 5.

  5. Ref. [67] lists in fact 30 isomer excitation energies, but we drop for simplicity the values for \(^{235}\)Pu and \(^{244}\)Bk for which RIPL-3 lists no empirical barriers.

  6. An increase of the rotational correction lowers the outer barrier more than the inner barrier, see the discussion around Fig. 5. For the heavier nuclei, the inner one tends to be the primary barrier such that an increase of b implies a larger difference between primary and secondary barriers. For the lighter nuclei, the opposite happens.

  7. We also note that both models were constructed with rather different numerical schemes: BSk14 relied on an expansion in a limited number of harmonic oscillator shells while we rely here on a coordinate space representation.

  8. Other sets of fission data obtained with SkM* exist, such as Ref. [82], but Ref.  [73] reports the most extensive data set that we are aware of.

  9. Only the Coulomb energy and surface energy require the numerical evaluation of an integral. Nevertheless, the numerical accuracy of these terms should be easily controllable [6].

References

  1. M. Arnould, S. Goriely, Astronuclear Physics: A tale of the atomic nuclei in the skies. Prog. Part. Nucl. Phys. 112, 103766 (2020)

    Google Scholar 

  2. C. F. v. Weizsäcker, Zur Theorie der Kernmassen. Z. Phys. 96, 431-458 (1935)

  3. J. Duflo, A.P. Zuker, Microscopic mass formulas. Phys. Rev. C 52, 23–27 (1995)

    ADS  Google Scholar 

  4. P. Möller, J.R. Nix, Nuclear masses from a unified macroscopic-microscopic model. At. Data Nucl. Data Tables 39, 213 (1988)

    ADS  Google Scholar 

  5. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, Nuclear Ground-State Masses and Deformations. At. Data Nucl. Data Tables 59, 185 (1995)

    ADS  Google Scholar 

  6. P. Möller, A. J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables, 109, 1-204

  7. F. Tondeur, An Energy Density Nuclear Mass Formula (I). Self-consistent calculation for spherical nuclei. Nucl. Phys. A 303, 185-198 (1978)

  8. S. Goriely, S. Hilaire, M. Girod, S. Péru, First Gogny–Hartree–Fock–Bogoliubov Nuclear Mass Model. Phys. Rev. Lett. 102, 242501 (2009)

    ADS  Google Scholar 

  9. S. Goriely, N. Chamel, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing. Phys. Rev. C 93, 034337 (2016)

  10. D. Peña-Arteaga, S. Goriely, N. Chamel, Relativistic mean-field mass models. Eur. Phys. J. A 52, 320 (2016)

    ADS  Google Scholar 

  11. G. Scamps, S. Goriely, E. Olsen, M. Bender, W. Ryssens, Skyrme-Hartree-Fock-Bogoliubov Mass Models on a 3D Mesh: effect of triaxial shape. Eur. Phys. J. A 57, 333 (2021)

    ADS  Google Scholar 

  12. W. Ryssens, G. Scamps, S. Goriely, M. Bender, Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: II. Time-reversal symmetry breaking, Eur. Phys. J. A 58, 246 (2022)

  13. E. Yüksel, D. Soydaner, H. Bahtiyar, Nuclear binding energy predictions using neural networks: application of the multilayer perceptron. Int. J. Mod. Phys. E 30, 2150017 (2021)

    ADS  Google Scholar 

  14. S. Gazula, J.W. Clark, H. Bohr, Learning and prediction of nuclear stability by neural networks. Nucl. Phys. A 540, 1–26 (1992)

    ADS  Google Scholar 

  15. N. Wang, M. Liu, Nuclear mass predictions with a radial basis function approach. Phys. Rev. C 84, 051303 (2011)

    ADS  Google Scholar 

  16. N. Wang, M. Liu, X. Wu, J. Meng, Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215–219 (2014)

    ADS  Google Scholar 

  17. R. Utama, J. Piekarewicz, Refining mass formulas for astrophysical applications: a Bayesian neural network approach. Phys. Rev. C 96, 044308 (2017)

    ADS  Google Scholar 

  18. L. Neufcourt, Y. Cao, W. Nazarewicz, F. Viens, Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C 98, 034318 (2018)

    ADS  Google Scholar 

  19. M. Shelley, A. Pastore, A new mass model for nuclear astrophysics: crossing 200 keV accuracy. Universe 7, 131 (2021)

    ADS  Google Scholar 

  20. Z.M. Niu, H.Z. Liang, Nuclear mass predictions with machine learning reaching the accuracy required by \(r\)-process studies. Phys. Rev. C 106, L021303 (2022)

    ADS  Google Scholar 

  21. W. Ye, Y. Qian, Z. Ren, Accuracy versus predictive power in nuclear mass tabulations. Phys. Rev. C 106, 024318 (2022)

    ADS  Google Scholar 

  22. W.A. Fowler, F. Hoyle, Nuclear cosmochronology. Annals of Physics 10, 280 (1960)

    ADS  MathSciNet  Google Scholar 

  23. S. Goriely, M. Arnould, Actinides: How well do we know their stellar production? Astron. Astrophys. 379, 1113 (2001)

    ADS  Google Scholar 

  24. S. Goriely, The fundamental role of fission during r-process nucleosynthesis in neutron star mergers. Eur. Phys. J. A 51, 22 (2015)

    ADS  Google Scholar 

  25. S. Bjørnholm, J.E. Lynn, The souble-humped fission barrier. Rev. Mod. Phys. 52, 725 (1980)

    ADS  Google Scholar 

  26. H. Krappe, K. Pomorski, Theory of Nuclear Fission, (Springer, 2012)

  27. N. Schunck, L.M. Robledo, N. Schunck, L.M. Robledo, Microscopic theory of nuclear fission: a review. Rep. Prog. Phys. 79, 116301 (2016)

    ADS  Google Scholar 

  28. K.-H. Schmidt, B. Jurado, Review on the progress in nuclear fission-experimental methods and theoretical descriptions. Rep. Prog. Phys. 81, 106301 (2018)

    ADS  Google Scholar 

  29. N. Schunck, D. Regnier, Theory of nuclear fission. Prog. Part. Nucl. Phys. 125, 103963 (2022)

    Google Scholar 

  30. M. Bender et al., Future of nuclear fission theory. J. Phys. G 47, 113002 (2020)

    Google Scholar 

  31. A. Mamdouh, J.M. Pearson, M. Rayet, F. Tondeur, Fission barriers of neutron-rich and superheavy nuclei calculated with the ETFSI method. Nucl. Phys. A 679, 337–358 (2001)

    ADS  Google Scholar 

  32. S.A. Giuliani, L.M. Robledo, Fission properties of the Barcelona-Catania-Paris-Madrid energy density functional. Phys. Rev. C 88, 054325 (2013)

    ADS  Google Scholar 

  33. M. Bender, P.-H. Heenen, P.G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003)

    ADS  Google Scholar 

  34. W. Ryssens, Symmetry breaking in nuclear mean-field models, Ph.D. thesis, Université Libre de Bruxelles, 2016

  35. S. Goriely, M. Samyn, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VII. Simultaneous fits to masses and fission barriers. Phys. Rev. C 75, 064312 (2007)

  36. M. Kortelainen, N. Hinohara, W. Nazarewicz, Multipole modes in deformed nuclei within the finite amplitude method. Phys. Rev. C 92, 051302 (2015)

    ADS  Google Scholar 

  37. R. Jodon, M. Bender, K. Bennaceur, J. Meyer, Constraining the surface properties of effective Skyrme interactions. Phys. Rev. C 94, 024335 (2016)

    ADS  Google Scholar 

  38. R. Capote et al., RIPL - reference input parameter library for calculation of nuclear reactions and nuclear data evaluation. Nucl. Data Sheets 110, 3107–3214 (2009)

    ADS  Google Scholar 

  39. M. Wang et al., The AME 2020 atomic mass evaluation. Chin. Phys. C 45, 3 (2021)

    Google Scholar 

  40. W. Ryssens, P.-H. Heenen, M. Bender, Numerical accuracy of mean-field calculations in coordinate space. Phys. Rev. C 92, 064318 (2015)

    ADS  Google Scholar 

  41. M. Girod, B. Grammaticos, Triaxial Hartree—Fock–Bogolyubov calculations with D1 effective interaction. Phys. Rev. C 27, 2317–2339 (1983)

    ADS  Google Scholar 

  42. H. Abusara, A.V. Afanasjev, P. Ring, Fission barriers in actinides in covariant density functional theory: the role of triaxiality. Phys. Rev. C 82, 044303 (2010)

    ADS  Google Scholar 

  43. B.N. Lu, J. Zhao, E.G. Zhao, S.G. Zhou, Multidimensionally-constrained relativistic mean-field models and potential-energy surfaces of actinide nuclei. Phys. Rev. C 89, 014323 (2014)

    ADS  Google Scholar 

  44. W. Ryssens, M. Bender, K. Bennaceur, P.-H. Heenen, J. Meyer, Impact of the surface energy coefficient on the deformation properties of atomic nuclei as predicted by Skyrme energy density functionals. Phys. Rev. C 99, 044315 (2019)

    ADS  Google Scholar 

  45. C. Ling, C. Zhou, Y. Shi, Fission barriers of actinide nuclei with nuclear density functional theory: influence of the triaxial deformation. Eur. Phys. J. A 56, 180 (2020)

    ADS  Google Scholar 

  46. S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, W. Nazarewicz, Shell structure of the superheavy elements. Nucl. Phys. A 611, 211 (1996)

    ADS  Google Scholar 

  47. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Potential energy surfaces of superheavy nuclei. Phys. Rev. C 58, 2126–2132 (1998)

    ADS  Google Scholar 

  48. M. Warda, J.L. Egido, L.M. Robledo, K. Pomorski, Self-consistent calculations of fission barriers in the Fm region. Phys. Rev. C 66, 143101 (2002)

    Google Scholar 

  49. H. Abusara, A.V. Afanasjev, P. Ring, Fission barriers in covariant density functional theory: extrapolation to superheavy nuclei. Phys. Rev. C 85, 024314 (2012)

    ADS  Google Scholar 

  50. F. Tondeur, S. Goriely, J.M. Pearson, M. Onsi, Towards a Hartree-Fock mass formula. Phys. Rev. C 62, 024308 (2000)

    ADS  Google Scholar 

  51. S. Goriely, N. Chamel, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 88, 024308 (2013)

  52. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Consequences of the center-of-mass correction in nuclear mean-field models. Eur. Phys. J. A 7, 467–478 (2000)

    ADS  Google Scholar 

  53. S. Goriely, M. Samyn, M. Bender, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. II. Role of the effective mass. Phys. Rev. C 68, 054325 (2003)

  54. J. Sadhukhan, J. Dobaczewski, W. Nazarewicz, J.A. Sheikh, A. Baran, Pairing-induced speedup of nuclear spontaneous fission. Phys. Rev. C 90, 061304 (2014)

    ADS  Google Scholar 

  55. M. Warda, A. Staszczak, W. Nazarewicz, Fission modes of mercury isotopes. Phys. Rev. C 86, 024601 (2012)

    ADS  Google Scholar 

  56. A. Baran, K. Pomorski, A. Lukasiak, A. Sobiczewski, A dynamic analysis of spontaneous-fission half-lives. Nucl. Phys. A 361, 83 (1981)

    ADS  Google Scholar 

  57. J.F. Lemaître, S. Goriely, S. Hilaire, N. Dubray, Microscopic description of the fission path with the Gogny interaction. Phys. Rev. C 98, 024623 (2018)

    ADS  Google Scholar 

  58. N. Dubray, D. Regnier, Numerical search of discontinuities in self-consistent potential energy surfaces. Comp. Phys. Comm. 183, 2035–2041 (2012)

    ADS  Google Scholar 

  59. M. Bender, W. Ryssens, in preparation

  60. S. Perez-Martin, L.M. Robledo, Fission properties of odd-\(A\) nuclei in a mean field framework. Int. J. Mod. Phys. E 18, 788 (2009)

    ADS  Google Scholar 

  61. P.-H. Heenen, B. Bally, M. Bender, W. Ryssens, Beyond-Mean-Field Correlations and the Description of Superheavy Elements, Proceedings of the Nobel Symposium on the ”Chemistry and Physics of Heavy and Superheavy Elements” (NS160) held at Bäckaskog Castle, Kristianstad, Sweden, May 29 - June 3 2016. D. Rudolph, L.-I. Elding, C. Fahlander, S. Åberg [eds.], EPJ Web of Conferences 131, 02001 (2016)

  62. M.H. Koh, L. Bonneau, P. Quentin, T.V.N. Hao, H. Wagiran, Fission barriers of two odd-neutron actinide nuclei taking into account the time-reversal symmetry breaking at the mean-field level. Phys. Rev. C 95, 014315 (2017)

    ADS  Google Scholar 

  63. Rodríguez-Guzmán, L. M. Robledo, Microscopic description of fission in odd-mass uranium and plutonium nuclei with the Gogny energy density functional. Eur. Phys J. A 53, 245 (2017)

  64. N. Schunck, M. Verrière, G. Potel Aguilar, R. C. Malone, J. A. Silano, A. P. D. Ramirez, A. P. Tonchev, Microscopic Calculation of Fission Product Yields for Odd-Mass Nuclei. Phys. Rev. C 107, 044312 (2023). https://doi.org/10.1103/PhysRevC.107.044312

  65. M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn, Pairing gaps from nuclear mean-field models. Eur. Phys. J. A 8, 59–75 (2000)

    ADS  Google Scholar 

  66. I. Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69 (2013)

    ADS  Google Scholar 

  67. M. Samyn, S. Goriely, M. Bender, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. III. Role of particle-number projection. Phys. Rev. C 70, 044309 (2004)

  68. M. Hunyadi et al., Excited Superdeformed K\(^{\pi }\)=0\(^+\) Rotational Bands in \(\beta \)-Vibrational Fission Resonances of \(^{240}\)Pu. Phys. Lett. B 505, 27 (2001)

    ADS  Google Scholar 

  69. B. Singh, R. Zywina, R.B. Firestone, Table of superdeformed nuclear bands and fission isomers. Nuclear Data Sheets 97, 241 (2002)

    ADS  Google Scholar 

  70. J. Kantele, W. Stöffl, L.E. Ussery, D.J. Decman, E.A. Henry, R.W. Hoff, L.G. Mann, G.L. Struble, Observation of an \(E0\) isomeric transition from the \(^{238}\rm U \) shape isomer. Phys. Rev. Lett. 51, 91 (1983)

    ADS  Google Scholar 

  71. J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Håkansson, Towards a better parametrisation of Skyrme-like effective forces: a critical study of the SkM force. Nucl. Phys. A 386, 79–100 (1982)

    ADS  Google Scholar 

  72. J.F. Berger, M. Girod, D. Gogny, Constrained Hartree-Fock and beyond. Nucl. Phys. A 502, 85–104 (1989)

    ADS  Google Scholar 

  73. M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. Stoitsov, S. M. Wild, Nuclear energy density optimization: Large deformations. Phys. Rev. C 85, 024304 (2012)

  74. M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler, A. Pastore, Nuclear energy density optimization: shell structure. Phys. Rev. C 89, 054314 (2014)

    ADS  Google Scholar 

  75. Ph. Da Costa, M. Bender, K. Bennaceur, J. Meyer, W. Ryssens, in preparation

  76. P. Klüpfel, P.-G. Reinhard, T.J. Bürvenich, J.A. Maruhn, Variations on a theme by Skyrme: a systematic study of adjustments of model parameters. Phys. Rev. C 79, 034310 (2009)

    ADS  Google Scholar 

  77. M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Nuclear energy density optimization. Phys. Rev. C 82, 024313 (2010)

    ADS  Google Scholar 

  78. D. Baye, P.-H. Heenen, Generalised meshes for quantum mechanical problems. J. Phys. A. Math. Gen. 19, 2041 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  79. H. Flocard, P. Quentin, D. Vautherin, M. Veneroni, A.K. Kerman, Self-consistent calculation of the fission barrier of \(^{240}\)Pu. Nucl. Phys. A 231, 176 (1974)

    ADS  Google Scholar 

  80. K. Rutz, J.A. Maruhn, P.-G. Reinhard, W. Greiner, Fission barriers and asymmetric ground states in the relativistic mean-field theory. Nucl. Phys. A 590, 680–702 (1995)

    ADS  Google Scholar 

  81. T. Bürvenich, M. Bender, J.A. Maruhn, P.-G. Reinhard, Systematics of fission barriers in superheavy elements. Phys. Rev. C 69, 014307 (2004)

    ADS  Google Scholar 

  82. L. Bonneau, P. Quentin, D. Samsœn, Fission barriers of heavy nuclei within a microscopic approach. Eur. Phys. J. A 21, 391–406 (2004)

    ADS  Google Scholar 

  83. M. Samyn, S. Goriely, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. V. Extension to fission barriers. Phys. Rev. C 72, 044316 (2005)

  84. W. Younes, D. Gogny, Microscopic calculation of \(^{240}\)Pu scission with a finite-range effective force. Phys. Rev. C 80, 054313 (2009)

    ADS  Google Scholar 

  85. Z.P. Li, T. Nikšić, D. Vretenar, P. Ring, J. Meng, Relativistic energy density functionals: Low-energy collective states of \(^{240}\)Pu and \(^{166}\)Er. Phys. Rev. C 81, 064321 (2010)

    ADS  Google Scholar 

  86. N. Schunck, D. Duke, H. Carr, A. Knoll, Description of induced nuclear fission with Skyrme energy functionals: static potential energy surfaces and fission fragment properties. Phys. Rev. C 90, 054305 (2014)

    ADS  Google Scholar 

  87. W. Ryssens, M. Bender, P.-H. Heenen, Iterative approaches to the self-consistent nuclear energy density functional problem: Heavy ball dynamics and potential preconditioning. Eur. Phys. J. A 55, 93 (2019)

  88. C.E. Bemis et al., \(E2\) and \(E4\) transition moments and equilibrium deformations in the actinide nuclei. Phys. Rev. C 8, 1466 (1973)

    ADS  Google Scholar 

  89. J.D. Zumbro et al., \(E2\) and \(E4\) deformations in \(^{232}\)Th and \(^{239,240,242}\)Pu. Phys. Lett. B 167, 383 (1986)

    ADS  Google Scholar 

  90. W. Ryssens, G. Giacalone, B. Schenke, C. Shen, Evidence of the hexadecapole deformation of Uranium-238 at the Relativistic Heavy Ion Collider. arXiv:2302.13617 [nucl-th]. https://doi.org/10.48550/arXiv.2302.13617

  91. P. Ring, P. Schuck, The nuclear many-body problem (Springer-Verlag, New York, 1980)

    Google Scholar 

  92. M. Bender, P.-H. Heenen, P. Bonche, Microscopic study of \(^{240}\)Pu: mean field and beyond. Phys. Rev. C 70, 054304 (2004)

    ADS  Google Scholar 

  93. S. Perez-Martin, L.M. Robledo, Microscopic justification of the equal filling approximation. Phys. Rev. C 78, 014304 (2008)

    ADS  Google Scholar 

  94. N. Schunck, J. Dobaczewski, J. McDonnell, J. Moré, W. Nazarewicz, J. Sarich, M.V. Stoitsov, One-quasiparticle states in the nuclear energy density functional theory. Phys. Rev. C 81, 024316 (2010)

    ADS  Google Scholar 

  95. M. Kowal, P. Jachimowicz, A. Sobiczewski, Fission barriers for even-even superheavy nuclei. Phys. Rev. C 82, 014303 (2010)

    ADS  Google Scholar 

  96. P. Jachimowicz, M. Kowal, J. Skalski, Adiabatic fission barriers in superheavy nuclei. Phys. Rev. C 95, 014303 (2017)

    ADS  Google Scholar 

  97. J.P. Delaroche, M. Girod, H. Goutte, J. Libert, Structure properties of even-even actinides at normal and super deformed shapes analysed using the Gogny force. Nucl. Phys. A 771, 103–168 (2006)

    ADS  Google Scholar 

  98. B.-N. Lu, E.-G. Zhao, S.-G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: barrier heights and saddle point shapes. Phys. Rev. C 85, 011301 (2012)

    ADS  Google Scholar 

  99. V.V. Pashkevich, The energy of non-axial deformation of heavy nuclei. Nucl. Phys. A 133, 400 (1969)

    ADS  Google Scholar 

  100. S.E. Larsson, I. Ragnarsson, S.G. Nilsson, Fission Barriers and the inclusion of axial asymmetry. Phys. Lett. B 38, 269 (1972)

    ADS  Google Scholar 

  101. U. Götz, H.C. Pauli, K. Junker, Influence of axially asymmetric distortions on fission barriers. Phys. Lett. B 39, 436 (1972)

    ADS  Google Scholar 

  102. A.K. Dutta, J.M. Pearson, F. Tondeur, Triaxial nuclei calculated with the extended Thomas-Fermi plus Strutinsky integral (ETFSI) method. Phys. Rev. C 61, 054303 (2000)

    ADS  Google Scholar 

  103. P. Möller, A.J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, S. Åberg, Heavy-element fission barriers. Phys. Rev. C 79, 064304 (2009)

    ADS  Google Scholar 

  104. P. Jachimowicz, M. Kowal, J. Skalski, Secondary fission barriers in even-even actinide nuclei. Phys. Rev. C 85, 034305 (2012)

    ADS  Google Scholar 

  105. J. Sadhukhan, K. Mazurek, A. Baran, J. Dobaczewski, W. Nazarewicz, J.A. Sheikh, Spontaneous fission lifetimes from the minimization of self-consistent collective action. Phys. Rev. C 88, 064314 (2013)

    ADS  Google Scholar 

  106. S.A. Giuliani, G. Martínez-Pinedo, L.M. Robledo, Fission properties of superheavy nuclei for r-process calculations. Phys. Rev. C 97, 034323 (2018)

    ADS  Google Scholar 

  107. K. Matsuyanagi, M. Matsuo, T. Nakatsukasa, N. Hinohara, K. Sato, Open problems in the microscopic theory of large-amplitude collective motion. J. Phys. G: Nucl. Part. Phys. 37, 064018 (2010)

    ADS  Google Scholar 

  108. A. Baran, J.A. Sheikh, J. Dobaczewski, W. Nazarewicz, A. Staszczak, Quadrupole collective inertia in nuclear fission: cranking approximation. Phys. Rev. C 84, 054321 (2011)

    ADS  Google Scholar 

  109. K. Washiyama, N. Hinohara, T. Nakatsukasa, Finite-amplitude method for collective inertia in spontaneous fission. Phys. Rev. C 103, 014306 (2021)

    ADS  Google Scholar 

  110. P. Jachimowicz, M. Kowal, J. Skalski, Static fission properties of actinide nuclei. Phys. Rev. C 101, 014311 (2020)

    ADS  Google Scholar 

  111. J. Erler, K. Langanke, H.P. Loens, G. Martínez-Pinedo, P.-G. Reinhard, Fission properties for r-process nuclei. Phys. Rev. C 85, 025802 (2012)

    ADS  Google Scholar 

  112. A. Taninah, S.E. Agbemava, A.V. Afanasjev, Covariant density functional theory input for r -process simulations in actinides and superheavy nuclei: the ground state and fission properties. Phys. Rev. C 102, 054330 (2020)

    ADS  Google Scholar 

  113. P. Jachimowicz, M. Kowal, J. Skalski, Properties of Heaviest Nuclei with 98 \(\le \)Z\(\le \)126 and 134 \(\le \) N \(\le \) 192. Atomic Data Nucl Data Tables 138, 101393 (2021)

    Google Scholar 

  114. G.A. Lalazissis, J. König, P. Ring, New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540 (1997)

    ADS  Google Scholar 

  115. G.A. Lalazissis, S. Karatzikos, R. Fossion, D.P. Arteaga, A.V. Afanasjev, P. Ring, The effective Force NL3 revisited. Phys. Lett. B 671, 36 (2009)

    ADS  Google Scholar 

  116. I. Muntian, Z. Patyk, A. Sobiczewski, Sensitivity of calculated properties of superheavy nuclei to various changes. Acta Physica Polonica B 32, 691 (2001)

    ADS  Google Scholar 

  117. T. Nikšić, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: adjusting parameters to binding energies. Phys. Rev. C 78, 034318 (2008)

    ADS  Google Scholar 

  118. S. Karatzikos, A.V. Afanasjev, G.A. Lalazissis, P. Ring, The fission barriers in actinides and superheavy nuclei in covariant density functional theory. Phys. Lett. B 689, 72 (2010)

    ADS  Google Scholar 

  119. P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 82, 054319 (2010)

    ADS  Google Scholar 

  120. S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree–Fock–Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008)

    ADS  Google Scholar 

  121. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107 (2016)

    ADS  Google Scholar 

  122. J.-F. Lemaître, S. Goriely, S. Hilaire, J.-L. Sida, Fully microscopic scission-point model to predict fission fragment observables. Phys. Rev. C 99, 034612 (2019)

    ADS  Google Scholar 

  123. J.-F. Lemaître, S. Goriely, A. Bauswein, H.-T. Janka, Fission fragment distributions and their impact on the r-process nucleosynthesis in neutron star mergers. Phys. Rev. C 103, 025806 (2021)

    ADS  Google Scholar 

  124. T.V.N. Hao, P. Quentin, L. Bonneau, Parity restoration in the highly truncated diagonalization approach: application to the outer fission barrier of \(^{240}\)Pu. Phys. Rev. C 86, 064307 (2012)

    ADS  Google Scholar 

  125. R. Bernard, S.A. Giuliani, L.M. Robledo, Role of dynamic pairing Correlations in Fission Dynamics. Phys. Rev. C 99, 064301 (2019)

    ADS  Google Scholar 

  126. P. Marević, N. Schunck, Fission of \(^{240}\)Pu with symmetry-restored density functional theory. Phys. Rev. Lett. 125, 102504 (2020)

    ADS  Google Scholar 

  127. J. Dobaczewski, Density Functional Theory for Nuclear Fission – a Proposal, arXiv:1910.03924

Download references

Acknowledgements

We would like to thank A. Afanasjev, S. Giuliani and P.-G. Reinhard for providing us with additional data on their calculations for use in Sect. 4.4.: these concern Refs. [106, 111, 112], respectively. We also thank J.-F. Lemaître for sharing his flooding code. W.R. acknowledges useful discussions with N. Schunck. This work was supported by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO) under the EOS Project nr O022818F. The present research benefited from computational resources made available on the Tier-1 supercomputer of the Fédération Wallonie–Bruxelles, infrastructure funded by the Walloon Region under the grant agreement nr 1117545. The funding for G.S. from the US DOE, Office of Science, Grant No. DE-FG02-97ER41014 is greatly appreciated. S.G. and W.R. acknowledge financial support from the F.R.S.-FNRS (Belgium). Work by M.B. has been supported by the French Agence Nationale de la Recherche under grant No. 19-CE31-0015-01 (NEWFUN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Ryssens.

Additional information

Communicated by D. Lacroix

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (dat 3 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryssens, W., Scamps, G., Goriely, S. et al. Skyrme–Hartree–Fock–Bogoliubov mass models on a 3D mesh: IIb. Fission properties of BSkG2. Eur. Phys. J. A 59, 96 (2023). https://doi.org/10.1140/epja/s10050-023-01002-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01002-x

Navigation