Skip to main content
Log in

Modewise Johnson–Lindenstrauss embeddings for nuclear many-body theory

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present work, we initiate a program that explores modewise Johnson–Lindenstrauss embeddings (JLEs) as a tool to reduce the computational cost and memory requirements of (nuclear) many-body methods. These embeddings are randomized projections of high-dimensional data tensors onto low-dimensional subspaces that preserve structural features like norms and inner products. An appealing feature of randomized embedding techniques is that they allow for the oblivious and incremental compression of large tensors, e.g., the nuclear Hamiltonian or wave functions amplitudes, into significantly smaller random sketches that still allow for the accurate calculation of ground-state energies and other observables. In particular, the oblivious nature of randomized JLE techniques makes it possible to compress a tensor without knowing in advance exactly what observables one might want to approximate at a later time. This opens the door for the use of tensors that are much too large to store in memory, e.g., untruncated three-nucleon forces in current approaches, or complete two- plus three-nucleon Hamiltonians in large, symmetry-unrestricted bases. Such compressed Hamiltonians can be stored and used later on with relative ease. As a first step, we perform a detailed analysis of a JLE’s impact on the second-order Many-Body Perturbation Theory (MBPT) corrections for nuclear ground-state observables like the energy and the radius, noting that these will be the dominant corrections in a well-behaved perturbative expansion, and highly important implicit contributions even in nonperturbative approaches. Numerical experiments for a wide range of closed-shell nuclei, model spaces and state-of-the-art nuclear interactions demonstrate the validity and potential of the proposed approach: We can compress nuclear Hamiltonians hundred- to thousandfold while only incurring mean relative errors of 1% or less in ground-state observables. Importantly, we show that JLEs capture the relevant physical information contained in the highly structured Hamiltonian tensor despite their random characteristics. In addition to the significant storage savings, the achieved compressions imply multiple order-of-magnitude reductions in computational effort when the compressed Hamiltonians are used in higher-order MBPT or nonperturbative many-body methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The simulation codes and data for \({}^{132}\textrm{Sn}\) obtained with the EM1.8/2.0 interaction in an \(e_\text {max}=6\) basis can be accessed in a Github repository at https://github.com/azarerepo/JL4MBPT. Data for other nuclei and basis sizes are available from the authors upon request.]

Notes

  1. We will use the notation \([n]\equiv \{1,\dots ,n\}\) throughout the paper.

  2. For information on mode-j fibers and unfoldings, and mode products in tensors, see [40].

  3. The contraction explicitly accounts for the contribution of the nonvanishing RHS of the fundamental anticommutator Eq. (10) so that we only need to track signs when we permute operators within a normal-ordered string.

  4. In particle-number conserving approaches, it can equivalently be written as a sum of two-body operators alone, but this has a subtle impact on HF and MBPT—see Refs. [50, 51].

  5. We denote the radial quantum number with a \(\nu \) instead of the usual n to avoid confusion with the occupation numbers. Individual single-particle states carry the projection \(m_p\) of \(j_p\) as quantum numbers in addition to the tuple p.

  6. We suppress the exponent of the operator to reduce clutter in subsequent expressions.

  7. Depending on the storage format for the sparse Hamiltonian tensor, we may face significant overhead: A coordinate-based format, for instance, would have a fivefold overlap because it needs to store four indices for each element in addition to the element’s value.

References

  1. B.R. Barrett, P. Navrátil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013). https://doi.org/10.1016/j.ppnp.2012.10.003

  2. P. Navrátil, S. Quaglioni, G. Hupin, C. Romero-Redondo, A. Calci, Phys. Scripta 91(5), 053002 (2016). https://doi.org/10.1088/0031-8949/91/5/053002

    Article  ADS  Google Scholar 

  3. C. Yang, H.M. Aktulga, P. Maris, E. Ng, J.P. Vary, in Proceedings of International Conference ‘Nuclear Theory in the Supercomputing Era — 2013’ (NTSE-2013), Ames, 2013, ed. by A.M. Shirokov, A.I. Mazur p. 272

  4. H. Hergert, Front. Phys. 8, 379 (2020). https://doi.org/10.3389/fphy.2020.00379

    Article  Google Scholar 

  5. A.B. Balantekin, J. Carlson, D.J. Dean, G.M. Fuller, R.J. Furnstahl, M. Hjorth-Jensen, R.V.F. Janssens, B.A. Li, W. Nazarewicz, F.M. Nunes, W.E. Ormand, S. Reddy, B.M. Sherrill, Mod. Phys. Lett. A 29(11), 1430010 (2014). https://doi.org/10.1142/S0217732314300109

    Article  ADS  Google Scholar 

  6. H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, Physics Reports 621, 165 (2016). https://doi.org/10.1016/j.physrep.2015.12.007

  7. H. Hergert, Phys. Scripta 92(2), 023002 (2017). http://stacks.iop.org/1402-4896/92/i=2/a=023002

  8. S.R. Stroberg, H. Hergert, S.K. Bogner, J.D. Holt, Ann. Rev. Nucl. Part. Sci. 69(1), 307 (2019). https://doi.org/10.1146/annurev-nucl-101917-021120

    Article  ADS  Google Scholar 

  9. I. Shavitt, R.J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  10. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rept. Prog. Phys. 77(9), 096302 (2014). http://stacks.iop.org/0034-4885/77/i=9/a=096302

  11. V. Somà, Front. Phys. 8, 340 (2020). https://doi.org/10.3389/fphy.2020.00340

    Article  Google Scholar 

  12. C. Barbieri, T. Duguet, V. Somà, Phys. Rev. C 105, 044330 (2022). https://doi.org/10.1103/PhysRevC.105.044330

    Article  ADS  Google Scholar 

  13. A. Rios, Front. Phys. 8, 387 (2020). https://doi.org/10.3389/fphy.2020.00387

    Article  Google Scholar 

  14. S.R. Stroberg, J.D. Holt, A. Schwenk, J. Simonis, Phys. Rev. Lett. 126, 022501 (2021). https://doi.org/10.1103/PhysRevLett.126.022501

    Article  ADS  Google Scholar 

  15. B. Hu, W. Jiang, T. Miyagi, Z. Sun, A. Ekström, C. Forssén, G. Hagen, J.D. Holt, T. Papenbrock, S.R. Stroberg, I. Vernon, Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01715-8

    Article  Google Scholar 

  16. P. Navrátil, G.P. Kamuntavicius, B.R. Barrett, Phys. Rev. C 61, 044001 (2000)

    Article  ADS  Google Scholar 

  17. A. Nogga, P. Navrátil, B.R. Barrett, J.P. Vary, Phys. Rev. C 73, 064002 (2006). https://doi.org/10.1103/PhysRevC.73.064002

    Article  ADS  Google Scholar 

  18. A. Nogga, H. Kamada, W. Gloeckle, Phys. Rev. Lett. 85, 944 (2000)

    Article  ADS  Google Scholar 

  19. R. Schutski, J. Zhao, T.M. Henderson, G.E. Scuseria, J. Chem. Phys. 147(18), 184113 (2017). https://doi.org/10.1063/1.4996988

    Article  ADS  Google Scholar 

  20. R.M. Parrish, Y. Zhao, E.G. Hohenstein, T.J. Martínez, J. Chem. Phys. 150(16), 164118 (2019). https://doi.org/10.1063/1.5092505

    Article  ADS  Google Scholar 

  21. E.G. Hohenstein, Y. Zhao, R.M. Parrish, T.J. Martínez, J. Chem. Phys. 151(16), 164121 (2019). https://doi.org/10.1063/1.5121867

    Article  ADS  Google Scholar 

  22. E.G. Hohenstein, B.S. Fales, R.M. Parrish, T.J. Martínez, J. Chem. Phys. 156(5), 054102 (2022). https://doi.org/10.1063/5.0077770

    Article  Google Scholar 

  23. M. Lesiuk, J. Comput. Chem. 40(12), 1319 (2019). https://doi.org/10.1002/jcc.25788

    Article  Google Scholar 

  24. M. Lesiuk, J. Chem. Theory Comput. 16(1), 453 (2020). https://doi.org/10.1021/acs.jctc.9b00985

    Article  Google Scholar 

  25. M. Lesiuk, J. Chem. Theory Comput. 17(12), 7632 (2021). https://doi.org/10.1021/acs.jctc.1c00933

    Article  Google Scholar 

  26. B. Zhu, R. Wirth, H. Hergert, Phys. Rev. C 104, 044002 (2021). https://doi.org/10.1103/PhysRevC.104.044002

    Article  ADS  Google Scholar 

  27. A. Tichai, P. Arthuis, K. Hebeler, M. Heinz, J. Hoppe, A. Schwenk, Phys. Lett. B 821, 136623 (2021). https://doi.org/10.1016/j.physletb.2021.136623

  28. A. Tichai, R. Schutski, G.E. Scuseria, T. Duguet, Phys. Rev. C 99, 034320 (2019). https://doi.org/10.1103/PhysRevC.99.034320

    Article  ADS  Google Scholar 

  29. A. Tichai, P. Arthuis, K. Hebeler, M. Heinz, J. Hoppe, A. Schwenk, L. Zurek, Phys. Rev. C 106, 024320 (2022). https://doi.org/10.1103/PhysRevC.106.024320

    Article  ADS  Google Scholar 

  30. B. Nagy, F. Jensen, Rev. Comput. Chem. 30, 93 (2017). https://doi.org/10.1002/9781119356059.ch3

    Article  Google Scholar 

  31. A. Tichai, J. Müller, K. Vobig, R. Roth, Phys. Rev. C 99, 034321 (2019). https://doi.org/10.1103/PhysRevC.99.034321

    Article  ADS  Google Scholar 

  32. J. Hoppe, A. Tichai, M. Heinz, K. Hebeler, A. Schwenk, Phys. Rev. C 103, 014321 (2021). https://doi.org/10.1103/PhysRevC.103.014321

    Article  ADS  Google Scholar 

  33. S.J. Novario, G. Hagen, G.R. Jansen, T. Papenbrock, Phys. Rev. C 102, 051303 (2020). https://doi.org/10.1103/PhysRevC.102.051303

    Article  ADS  Google Scholar 

  34. W.B. Johnson, J. Lindenstrauss, in Conference in modern analysis and probability, ed. by R. Beals, A. Beck, A.a.o. Bellow. no. 26 in Contemporary Mathematics, 1984 (Conn., New Haven, 1982), p. 189. https://doi.org/10.1090/conm/026/737400

  35. N. Halko, P. Martinsson, J. Tropp, SIAM Rev. 53(2), 217 (2011). https://doi.org/10.1137/090771806

    Article  MathSciNet  Google Scholar 

  36. M.W. Mahoney, Found. Trends Mach. Learn. 3(2), 123 (2011). https://doi.org/10.1561/2200000035

    Article  Google Scholar 

  37. D.P. Woodruff, Found. Trends Theor. Comput. Sci. 10(1–2), 1 (2014). https://doi.org/10.1561/0400000060

    Article  MathSciNet  Google Scholar 

  38. C. Battaglino, G. Ballard, T.G. Kolda, SIAM J. Matrix Anal. Appl. 39(2), 876 (2018). https://doi.org/10.1137/17M1112303

    Article  MathSciNet  Google Scholar 

  39. Y. Sun, Y. Guo, C. Luo, J.A. Tropp, M. Udell, SIAM J. Math. Data Sci. (SIMODS) 2(4), 1123 (2020). https://doi.org/10.1137/19M1257718

    Article  Google Scholar 

  40. T.G. Kolda, B.W. Bader, SIAM Rev. 51(3), 455 (2009). https://doi.org/10.1137/07070111X

    Article  ADS  MathSciNet  Google Scholar 

  41. M.A. Iwen, D. Needell, E. Rebrova, A. Zare, SIAM J. Matrix Anal. Appl. 42(1), 376 (2021). https://doi.org/10.1137/19M1308116

    Article  MathSciNet  Google Scholar 

  42. D. Achlioptas, J. Comput. Syst. Sci. 66(4), 671 (2003)

    Article  Google Scholar 

  43. S. Dasgupta, A. Gupta, Random Struct. Algorithms 22(1), 60 (2003)

    Article  Google Scholar 

  44. J. Håstad, J. Algorithms 11(4), 644 (1990). https://doi.org/10.1016/0196-6774(90)90014-6

    Article  MathSciNet  Google Scholar 

  45. R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, 2018)

  46. J. Langhammer, R. Roth, C. Stumpf, Phys. Rev. C 86, 054315 (2012). https://doi.org/10.1103/PhysRevC.86.054315

    Article  ADS  Google Scholar 

  47. A. Tichai, J. Langhammer, S. Binder, R. Roth, Phys. Lett. B 756, 283 (2016). https://doi.org/10.1016/j.physletb.2016.03.029

  48. A. Tichai, R. Roth, T. Duguet, Front. Phys. 8, 164 (2020). https://doi.org/10.3389/fphy.2020.00164

    Article  Google Scholar 

  49. W. Kutzelnigg, D. Mukherjee, J. Chem. Phys. 107(2), 432 (1997). https://doi.org/10.1063/1.474405

  50. S.B. Khadkikar, V.B. Kamble, Nucl. Phys. A 225, 352 (1974)

    Article  ADS  Google Scholar 

  51. H. Hergert, R. Roth, Phys. Lett. B 682, 27 (2009). https://doi.org/10.1016/j.physletb.2009.10.100

    Article  ADS  MathSciNet  Google Scholar 

  52. G. Hagen, T. Papenbrock, D.J. Dean, A. Schwenk, A. Nogga, M. Włoch, P. Piecuch, Phys. Rev. C 76, 034302 (2007). https://doi.org/10.1103/PhysRevC.76.034302

    Article  ADS  Google Scholar 

  53. R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012). https://doi.org/10.1103/PhysRevLett.109.052501

    Article  ADS  Google Scholar 

  54. A. Tichai, R. Wirth, J. Ripoche, T. Duguet, Eur. Phys. J. A 56(10), 272 (2020). https://doi.org/10.1140/epja/s10050-020-00233-6

    Article  ADS  Google Scholar 

  55. K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Phys. Rev. C 83, 031301 (2011). https://doi.org/10.1103/PhysRevC.83.031301

    Article  ADS  Google Scholar 

  56. A. Nogga, S.K. Bogner, A. Schwenk, Phys. Rev. C 70, 061002 (2004). https://doi.org/10.1103/PhysRevC.70.061002

    Article  ADS  Google Scholar 

  57. S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010). https://doi.org/10.1016/j.ppnp.2010.03.001

    Article  ADS  Google Scholar 

  58. T. Miyagi, S.R. Stroberg, P. Navrátil, K. Hebeler, J.D. Holt, Phys. Rev. C 105, 014302 (2022). https://doi.org/10.1103/PhysRevC.105.014302

    Article  ADS  Google Scholar 

  59. K. Hebeler, V. Durant, J. Hoppe, M. Heinz, A. Schwenk, J. Simonis, A. Tichai, Phys. Rev. C 107, 024310 (2023), https://doi.org/10.1103/PhysRevC.107.024310

  60. E. Gebrerufael, A. Calci, R. Roth, Phys. Rev. C 93, 031301 (2016). https://doi.org/10.1103/PhysRevC.93.031301

    Article  ADS  Google Scholar 

  61. F. Krahmer, R. Ward, SIAM J. Math. Anal. 43(3), 1269 (2011)

    Article  MathSciNet  Google Scholar 

  62. J.M. Yao, Symmetry Restoration Methods (Springer Nature Singapore, Singapore, 2022), pp. 1–36. https://doi.org/10.1007/978-981-15-8818-1_18-1

  63. J.M. Yao, B. Bally, J. Engel, R. Wirth, T.R. Rodríguez, H. Hergert, Phys. Rev. Lett. 124, 232501 (2020). https://doi.org/10.1103/PhysRevLett.124.232501

    Article  ADS  Google Scholar 

  64. M. Frosini, T. Duguet, J.P. Ebran, V. Somà, Eur. Phys. J. A 58(4) (2022). https://doi.org/10.1140/epja/s10050-022-00692-z

  65. M. Frosini, T. Duguet, J.P. Ebran, B. Bally, H. Hergert, T.R. Rodríguez, R. Roth, J.M. Yao, V. Somà, Eur. Phys. J. A 58(4), 64 (2022). https://doi.org/10.1140/epja/s10050-022-00694-x

    Article  ADS  Google Scholar 

  66. M. Frosini, T. Duguet, J.P. Ebran, B. Bally, T. Mongelli, T.R. Rodríguez, R. Roth, V. Somà, Eur. Phys. J. A 58(4) (2022). https://doi.org/10.1140/epja/s10050-022-00693-y

  67. G. Hagen, S.J. Novario, Z.H. Sun, T. Papenbrock, G.R. Jansen, J.G. Lietz, T. Duguet, A. Tichai, Phys. Rev. C 105, 064311 (2022). https://doi.org/10.1103/PhysRevC.105.064311

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C. A. Haselby and M. Iwen were supported in part by the National Science Foundation under Award No. DMS 2106472. H. Hergert and R. Wirth acknowledge support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Awards No. DE-SC0017887 and DE-SC0018083 (NUCLEI SciDAC-4 Collaboration.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hergert.

Additional information

Communicated by V. Somá.

Appendix A: Additional results

Appendix A: Additional results

For completeness, we compile detailed results for energy corrections in additional nuclei in this appendix.

Fig. 13
figure 13

Contributions of each angular momentum channel to the mean relative error \(\overline{\varDelta E^{(2)}}/|E^{(2)}\) as a function of \(e_\text {max}\), for fixed compression \(c_\textrm{tot}\le 10^{-3}\). All calculations were performed with the EM1.8/2.0 interaction. Our favored two-stage JL embedding (RFD + RFD)real (cf. Sect. 5.2) was used for compression, and 200 trials were carried out

Figure 13 shows the angular-momentum channel breakdown of the mean relative error of \(E^{(2)}\) for different basis sizes in the nuclei \({}^{40,48}\textrm{Ca}\). The observed trends match what we found and discussed for \({}^{16}\textrm{O}\) and \({}^{132}\textrm{Sn}\) via Fig. 6.

Figure 14 extends the results for \(\overline{\varDelta E^{(2)}}(J)/|E^{(2)|}\) of Fig. 7 for nuclei beyond \({}^{16}\textrm{O}\). The mean relative errors grow exponentially as we decrease \(c_\textrm{tot}\) over a wide range, with some allowance for fluctuations due to the random sampling performed by the JLE (cf. Sect. 5.3.2).

Fig. 14
figure 14

Contributions of each angular momentum channel to the mean relative error \(\overline{\varDelta E^{(2)}}/|E^{(2)}|\) as a function of the compression \(c_\textrm{tot}\). Calculations were performed with the EM1.8/2.0 interaction in an \(e_\text {max}=14\) basis, and a two-stage JL embedding (RFD + RFD)real with \(c_2=0.2\) has been used. 200 trials were performed

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, A., Wirth, R., Haselby, C.A. et al. Modewise Johnson–Lindenstrauss embeddings for nuclear many-body theory. Eur. Phys. J. A 59, 95 (2023). https://doi.org/10.1140/epja/s10050-023-00999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00999-5

Navigation