Skip to main content
Log in

Effects of weak magnetic field and finite chemical potential on the transport of charge and heat in hot QCD matter

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We have studied the effects of weak magnetic field and finite chemical potential on the transport of charge and heat in hot QCD matter by estimating their respective response functions, viz. the electrical conductivity (\(\sigma _{\textrm{el}}\)), the Hall conductivity (\(\sigma _{\textrm{H}}\)), the thermal conductivity (\(\kappa _0\)) and the Hall-type thermal conductivity (\(\kappa _1\)). The expressions of charge and heat transport coefficients are obtained by solving the relativistic Boltzmann transport equation in the relaxation time approximation at weak magnetic field and finite chemical potential. The interactions among partons are incorporated through their thermal masses. We have observed that \(\sigma _{{\textrm{el}}}\) and \(\kappa _0\) decrease and \(\sigma _{{\textrm{H}}}\) and \(\kappa _1\) increase with the magnetic field in the weak magnetic field regime. On the other hand, the presence of a finite chemical potential increases these transport coefficients. The effects of weak magnetic field and finite chemical potential on aforesaid transport coefficients are found to be more conspicuous at low temperatures, whereas at high temperatures, they have only a mild dependence on magnetic field and chemical potential. We have found that the presence of finite chemical potential further extends the lifetime of the magnetic field. Furthermore, we have explored the effects of weak magnetic field and finite chemical potential on the Knudsen number, the elliptic flow coefficient and the Wiedemann–Franz law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All numerical data generated during this study are included in this published article.]

References

  1. V. Skokov, A. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    ADS  Google Scholar 

  2. A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)

    ADS  Google Scholar 

  3. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    ADS  Google Scholar 

  4. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    ADS  Google Scholar 

  5. V. Braguta, M.N. Chernodub, V.A. Goy, K. Landsteiner, A.V. Molochkov, M.I. Polikarpov, Phys. Rev. D 89, 074510 (2014)

    ADS  Google Scholar 

  6. M.N. Chernodub, A. Cortijo, A.G. Grushin, K. Landsteiner, M.A.H. Vozmediano, Phys. Rev. B 89, 081407(R) (2014)

    ADS  Google Scholar 

  7. D.E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014)

    ADS  Google Scholar 

  8. D. Satow, Phys. Rev. D 90, 034018 (2014)

    ADS  Google Scholar 

  9. S. Pu, S.Y. Wu, D.L. Yang, Phys. Rev. D 91, 025011 (2015)

    ADS  Google Scholar 

  10. D.E. Kharzeev, D.T. Son, Phys. Rev. Lett. 106, 062301 (2011)

    ADS  Google Scholar 

  11. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    MathSciNet  Google Scholar 

  12. L. McLerran, V. Skokov, Nucl. Phys. A 929, 184 (2014)

    ADS  Google Scholar 

  13. S. Rath, B.K. Patra, Phys. Rev. D 100, 016009 (2019)

    ADS  MathSciNet  Google Scholar 

  14. S. Rath, B.K. Patra, J. High Energy Phys. 1712, 098 (2017)

    ADS  Google Scholar 

  15. A. Bandyopadhyay, B. Karmakar, N. Haque, M.G. Mustafa, Phys. Rev. D 100, 034031 (2019)

    ADS  MathSciNet  Google Scholar 

  16. S. Rath, B.K. Patra, Eur. Phys. J. A 55, 220 (2019)

    ADS  Google Scholar 

  17. B. Karmakar, R. Ghosh, A. Bandyopadhyay, N. Haque, M.G. Mustafa, Phys. Rev. D 99, 094002 (2019)

    ADS  MathSciNet  Google Scholar 

  18. H. van Hees, C. Gale, R. Rapp, Phys. Rev. C 84, 054906 (2011)

    ADS  Google Scholar 

  19. C. Shen, U.W. Heinz, J.-F. Paquet, C. Gale, Phys. Rev. C 89, 044910 (2014)

    ADS  Google Scholar 

  20. K. Tuchin, Phys. Rev. C 88, 024910 (2013)

    ADS  Google Scholar 

  21. K.A. Mamo, J. High Energy Phys. 1308, 083 (2013)

    ADS  Google Scholar 

  22. K. Fukushima, K. Hattori, H.-U. Yee, Y. Yin, Phys. Rev. D 93, 074028 (2016)

    ADS  Google Scholar 

  23. V. Roy, S. Pu, L. Rezzolla, D. Rischke, Phys. Lett. B 750, 45 (2015)

    ADS  Google Scholar 

  24. G. Inghirami, L. Del Zanna, A. Beraudo, M.H. Moghaddam, F. Becattini, M. Bleicher, Eur. Phys. J. C 76, 659 (2016)

    ADS  Google Scholar 

  25. J.I. Kapusta, J.M. Torres-Rincon, Phys. Rev. C 86, 054911 (2012)

    ADS  Google Scholar 

  26. G.S. Denicol, H. Niemi, I. Bouras, E. Molnár, Z. Xu, D.H. Rischke, C. Greiner, Phys. Rev. D 89, 074005 (2014)

    ADS  Google Scholar 

  27. A. Muronga, Phys. Rev. C 76, 014910 (2007)

    ADS  Google Scholar 

  28. A. Puglisi, S. Plumari, V. Greco, Phys. Rev. D 90, 114009 (2014)

    ADS  Google Scholar 

  29. L. Thakur, P.K. Srivastava, G.P. Kadam, M. George, H. Mishra, Phys. Rev. D 95, 096009 (2017)

    ADS  Google Scholar 

  30. S. Yasui, S. Ozaki, Phys. Rev. D 96, 114027 (2017)

    ADS  Google Scholar 

  31. Seung-il Nam, Phys. Rev. D 86, 033014 (2012)

    ADS  Google Scholar 

  32. M. Greif, I. Bouras, C. Greiner, Z. Xu, Phys. Rev. D 90, 094014 (2014)

    ADS  Google Scholar 

  33. B. Feng, Phys. Rev. D 96, 036009 (2017)

    ADS  Google Scholar 

  34. S. Mitra, V. Chandra, Phys. Rev. D 94, 034025 (2016)

    ADS  Google Scholar 

  35. S. Mitra, V. Chandra, Phys. Rev. D 96, 094003 (2017)

    ADS  Google Scholar 

  36. S. Gupta, Phys. Lett. B 597, 57 (2004)

    ADS  Google Scholar 

  37. G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, J.-I. Skullerud, J. High Energy Phys. 1502, 186 (2015)

    ADS  Google Scholar 

  38. H.-T. Ding, O. Kaczmarek, F. Meyer, Phys. Rev. D 94, 034504 (2016)

    ADS  Google Scholar 

  39. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon Press, 1981)

    Google Scholar 

  40. A. Harutyunyan, A. Sedrakian, Phys. Rev. C 94, 025805 (2016)

    ADS  Google Scholar 

  41. G.S. Denicol et al., Phys. Rev. D 98, 076009 (2018)

    ADS  MathSciNet  Google Scholar 

  42. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 101, 034027 (2020)

    ADS  Google Scholar 

  43. Z. Chen, C. Greiner, A. Huang, Z. Xu, Phys. Rev. D 101, 056020 (2020)

    ADS  MathSciNet  Google Scholar 

  44. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 99, 094031 (2019)

    ADS  MathSciNet  Google Scholar 

  45. A. Das, H. Mishra, R.K. Mohapatra, Phys. Rev. D 100, 114004 (2019)

    ADS  Google Scholar 

  46. A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh, V. Roy, Phys. Rev. D 102, 016016 (2020)

    ADS  MathSciNet  Google Scholar 

  47. A. Bandyopadhyay, S. Ghosh, R.L.S. Farias, J. Dey, G. Krein, Phys. Rev. D 102, 114015 (2020)

    ADS  MathSciNet  Google Scholar 

  48. B. Chatterjee, R. Rath, G. Sarwar, R. Sahoo, Eur. Phys. J. A 57, 45 (2021)

    ADS  Google Scholar 

  49. J. Dey, S. Satapathy, P. Murmu, S. Ghosh, Pramana J. Phys. 95, 125 (2021)

    ADS  Google Scholar 

  50. S. Satapathy, S. Ghosh, S. Ghosh, Phys. Rev. D 104, 056030 (2021)

    ADS  Google Scholar 

  51. J. Dey, S. Satapathy, A. Mishra, S. Paul, S. Ghosh, Int. J. Mod. Phys. E 30, 2150044 (2021)

    ADS  Google Scholar 

  52. E.G. Blackman, G.B. Field, Phys. Rev. Lett. 71, 3481 (1993)

    ADS  Google Scholar 

  53. N. Bessho, A. Bhattacharjee, Phys. Plasmas 14, 056503 (2007)

    ADS  Google Scholar 

  54. P.V. Buividovich, M.N. Chernodub, D.E. Kharzeev, T. Kalaydzhyan, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. Lett. 105, 132001 (2010)

    ADS  Google Scholar 

  55. K. Hattori, D. Satow, Phys. Rev. D 94, 114032 (2016)

    ADS  Google Scholar 

  56. L. Thakur, P.K. Srivastava, Phys. Rev. D 100, 076016 (2019)

    ADS  Google Scholar 

  57. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 120, 162301 (2018)

    ADS  Google Scholar 

  58. S. Rath, B.K. Patra, Eur. Phys. J. C 80, 747 (2020)

    ADS  Google Scholar 

  59. M. Kurian, V. Chandra, Phys. Rev. D 99, 116018 (2019)

    ADS  Google Scholar 

  60. M. Kurian, S. Mitra, S. Ghosh, V. Chandra, Eur. Phys. J. C 79, 134 (2019)

    ADS  Google Scholar 

  61. K. Fukushima, Phys. Lett. B 591, 277 (2004)

    ADS  Google Scholar 

  62. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa, R. Ray, Phys. Rev. D 73, 114007 (2006)

    ADS  Google Scholar 

  63. H. Abuki, K. Fukushima, Phys. Lett. B 676, 57 (2009)

  64. N. Su, K. Tywoniuk, Phys. Rev. Lett. 114, 161601 (2015)

    ADS  Google Scholar 

  65. W. Florkowski, R. Ryblewski, N. Su, K. Tywoniuk, Phys. Rev. C 94, 044904 (2016)

    ADS  Google Scholar 

  66. S. Rath, B.K. Patra, Phys. Rev. D 102, 036011 (2020)

    ADS  MathSciNet  Google Scholar 

  67. S. Rath, B.K. Patra, Eur. Phys. J. C 81, 139 (2021)

    ADS  Google Scholar 

  68. V.M. Bannur, J. High Energy Phys. 0709, 046 (2007)

    ADS  Google Scholar 

  69. V.M. Bannur, Phys. Rev. C 75, 044905 (2007)

    ADS  Google Scholar 

  70. P.K. Srivastava, S.K. Tiwari, C.P. Singh, Phys. Rev. D 82, 014023 (2010)

    ADS  Google Scholar 

  71. P.K. Srivastava, C.P. Singh, Phys. Rev. D 85, 114016 (2012)

    ADS  Google Scholar 

  72. Y. Hirono, M. Hongo, T. Hirano, Phys. Rev. C 90, 021903 (2014)

    ADS  Google Scholar 

  73. J.I. Kapusta, B. Müller, M. Stephanov, Phys. Rev. C 85, 054906 (2012)

    ADS  Google Scholar 

  74. C. Crecignani, G.M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications (Birkhiiuser, Boston, 2002)

    Google Scholar 

  75. G.S. Rocha, G.S. Denicol, J. Noronha, Phys. Rev. Lett. 127, 042301 (2021)

    ADS  Google Scholar 

  76. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1987)

    Google Scholar 

  77. K. Hattori, S. Li, D. Satow, H.-U. Yee, Phys. Rev. D 95, 076008 (2017)

    ADS  Google Scholar 

  78. K. Hattori, X.-G. Huang, D.H. Rischke, D. Satow, Phys. Rev. D 96, 094009 (2017)

    ADS  Google Scholar 

  79. M. Kurian, V. Chandra, Phys. Rev. D 97, 116008 (2018)

    ADS  Google Scholar 

  80. A. Hosoya, K. Kajantie, Nucl. Phys. B 250, 666 (1985)

    ADS  Google Scholar 

  81. A. Ayala et al., Phys. Rev. D 98, 031501 (2018)

    ADS  MathSciNet  Google Scholar 

  82. M. Greif, F. Reining, I. Bouras, G.S. Denicol, Z. Xu, C. Greiner, Phys. Rev. E 87, 033019 (2013)

    ADS  Google Scholar 

  83. E. Braaten, R.D. Pisarski, Phys. Rev. D 45, R1827 (1992)

    ADS  Google Scholar 

  84. A. Peshier, B. Kämpfer, G. Soff, Phys. Rev. D 66, 094003 (2002)

    ADS  Google Scholar 

  85. K. Dusling, T. Schäfer, Phys. Rev. C 85, 044909 (2012)

    ADS  Google Scholar 

  86. M. Alqahtani, M. Nopoush, M. Strickland, Phys. Rev. C 95, 034906 (2017)

    ADS  Google Scholar 

  87. J.Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    ADS  Google Scholar 

  88. R.S. Bhalerao, J.-P. Blaizot, N. Borghini, J.-Y. Ollitrault, Phys. Lett. B 627, 49 (2005)

    ADS  Google Scholar 

  89. H.-J. Drescher, A. Dumitru, C. Gombeaud, J.-Y. Ollitrault, Phys. Rev. C 76, 024905 (2007)

    ADS  Google Scholar 

  90. C. Gombeaud, J.-Y. Ollitrault, Phys. Rev. C 77, 054904 (2008)

    ADS  Google Scholar 

  91. R.K. Mohapatra, P.S. Saumia, A.M. Srivastava, Mod. Phys. Lett. A 26, 2477 (2011)

    ADS  Google Scholar 

  92. R. Snellings (STAR collaboration), Acta Phys. Hung. A 21, 237 (2004)

  93. A. Tang (STAR collaboration), arXiv:0808.2144 [nucl-ex]

  94. K. Aamodt et al. (ALICE collaboration), Phys. Rev. Lett. 105, 252302 (2010)

Download references

Acknowledgements

One of us (S. R.) would like to acknowledge the Indian Institute of Technology Bombay for the Institute postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhalaxmi Rath.

Additional information

Communicated by A. Peshier.

Appendices

Appendices

Derivation of equation (31)

By substituting the following partial derivatives in eq. (30),

$$\begin{aligned} v_x\frac{\partial f_f}{\partial p_0}= & {} -\beta v_xf_f^0-qE\tau _f\beta f_f^0v_x^2\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} \nonumber -\beta f_f^0\Gamma _xv_x^2\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} -\beta f_f^0\Gamma _yv_xv_y\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} -\beta f_f^0\Gamma _zv_xv_z\left( \frac{1}{\omega _f}+\beta \right) , \end{aligned}$$
(A.59)
$$\begin{aligned} \nonumber v_x\frac{\partial f_f}{\partial p_y}= & {} -\beta v_xv_yf_f^0-qE\tau _f\beta f_f^0v_x^2v_y\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} \nonumber -\beta f_f^0\Gamma _xv_x^2v_y\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} -\beta f_f^0\Gamma _yv_xv_y^2\left( \frac{1}{\omega _f}+\beta \right) +\frac{v_x\Gamma _y\beta f_f^0}{\omega _f}\nonumber \\{} & {} -\beta f_f^0\Gamma _zv_xv_yv_z\left( \frac{1}{\omega _f}+\beta \right) , \end{aligned}$$
(A.60)
$$\begin{aligned} v_y\frac{\partial f_f}{\partial p_x}= & {} -\beta v_yv_xf_f^0-qE\tau _f\beta f_f^0v_yv_x^2\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} \nonumber +\frac{qE\tau _f\beta f_f^0v_y}{\omega _f} -\beta f_f^0\Gamma _xv_yv_x^2\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} +\frac{\Gamma _x\beta f_f^0v_y}{\omega _f} -\beta f_f^0\Gamma _yv_y^2v_x\left( \frac{1}{\omega _f}+\beta \right) \nonumber \\{} & {} -\beta f_f^0\Gamma _zv_yv_zv_x\left( \frac{1}{\omega _f}+\beta \right) , \end{aligned}$$
(A.61)

and then dropping higher order velocity terms, we get

$$\begin{aligned}{} & {} -qE\tau _fv_x+\left( \Gamma _xv_x+\Gamma _yv_y+\Gamma _zv_z\right) \nonumber \\{} & {} \quad -\frac{qB\tau _f}{\omega _f}\left( v_x\Gamma _y-v_y\Gamma _x\right) +\frac{\tau _f^2qBqEv_y}{\omega _f}=0.\end{aligned}$$
(A.62)

Comparing the coefficients of \(v_z\) on both sides of Eq. (A.62), we get \(\Gamma _z=0\). Then, we have

$$\begin{aligned}{} & {} -qEv_x+\frac{\Gamma _x}{\tau _f}v_x-\omega _c\Gamma _yv_x+\frac{\Gamma _y}{\tau _f}v_y+\omega _c\Gamma _xv_y\nonumber \\{} & {} \quad +\tau _f\omega _cqEv_y=0,\end{aligned}$$
(A.63)

where the cyclotron frequency, \(\omega _c=\frac{qB}{\omega _f}\). Equating coefficients of \(v_x\) and \(v_y\) on both sides of Eq. (A.63), we get

$$\begin{aligned}{} & {} \frac{\Gamma _x}{\tau _f}-\omega _c\Gamma _y-qE=0, \end{aligned}$$
(A.64)
$$\begin{aligned}{} & {} \frac{\Gamma _y}{\tau _f}+\omega _c\Gamma _x+\tau _f\omega _cqE=0.\end{aligned}$$
(A.65)

After solving Eqs. (A.64) and (A.65), we obtain

$$\begin{aligned}{} & {} \Gamma _x=\frac{qE\tau _f\left( 1-\omega _c^2\tau _f^2\right) }{1+\omega _c^2\tau _f^2}, \end{aligned}$$
(A.66)
$$\begin{aligned}{} & {} \Gamma _y=-\frac{2qE\omega _c\tau _f^2}{1+\omega _c^2\tau _f^2}.\end{aligned}$$
(A.67)

Now, ansatz (29) can be written as

$$\begin{aligned} f_f{} & {} =f_f^0-qE\tau _f\frac{\partial f_f^0}{\partial p_x}-qE\tau _f\left( \frac{1-\omega _c^2\tau _f^2}{1+\omega _c^2\tau _f^2}\right) \frac{\partial f_f^0}{\partial p_x}\nonumber \\{} & {} \quad +2qE\left( \frac{\omega _c\tau _f^2}{1+\omega _c^2\tau _f^2}\right) \frac{\partial f_f^0}{\partial p_y}.\end{aligned}$$
(A.68)

By using \(\frac{\partial f_f^0}{\partial p_x}=v_x\frac{\partial f_f^0}{\partial \omega _f}=-v_x\beta f_f^0\left( 1-f_f^0\right) \) and \(\frac{\partial f_f^0}{\partial p_y}=v_y\frac{\partial f_f^0}{\partial \omega _f}=-v_y\beta f_f^0\left( 1-f_f^0\right) \), eq. (A.68) gets simplified into

$$\begin{aligned} \nonumber f_f= & {} f_f^0+qE\tau _fv_x\beta f_f^0\left( 1-f_f^0\right) \\{} & {} \nonumber +qE\tau _fv_x\beta \left( \frac{1-\omega _c^2\tau _f^2}{1+\omega _c^2\tau _f^2}\right) f_f^0\left( 1-f_f^0\right) \\{} & {} -2qEv_y\beta \left( \frac{\omega _c\tau _f^2}{1+\omega _c^2\tau _f^2}\right) f_f^0\left( 1-f_f^0\right) .\end{aligned}$$
(A.69)

This leads to the determination of \(\delta f_f\) as

$$\begin{aligned} \delta f_f{} & {} =2qEv_x\beta \left( \frac{\tau _f}{1+\omega _c^2\tau _f^2}\right) f_f^0\left( 1-f_f^0\right) \nonumber \\{} & {} \quad -2qEv_y\beta \left( \frac{\omega _c\tau _f^2}{1+\omega _c^2\tau _f^2}\right) f_f^0\left( 1-f_f^0\right) .\end{aligned}$$
(A.70)

Derivation of Eq. (45)

Substituting the value of L (44) in eq. (43) and simplifying, we have

$$\begin{aligned}{} & {} \nonumber \frac{\left( \omega _f-h_f\right) }{T}v_x\left( \partial ^xT-\frac{T}{nh_f}\partial ^xP\right) +\frac{\Gamma _xv_x}{\tau _f}-\omega _c\Gamma _yv_x\\{} & {} \quad \nonumber -qEv_x+\frac{\left( \omega _f-h_f\right) }{T}v_y\left( \partial ^yT-\frac{T}{nh_f}\partial ^yP\right) +\frac{\Gamma _yv_y}{\tau _f}\\{} & {} \quad \nonumber +\omega _c\Gamma _xv_y+\tau _f\omega _cqEv_y +p_0\frac{DT}{T}-\frac{p^\mu p^\alpha }{p_0}\nabla _\mu u_\alpha \\{} & {} \quad +TD\left( \frac{\mu _f}{T}\right) =0. \end{aligned}$$
(B.71)

Equating the coefficients of \(v_x\) and \(v_y\) on both sides of the above equation, we obtain

$$\begin{aligned}{} & {} \frac{\left( \omega _f-h_f\right) }{T}\left( \partial ^xT-\frac{T}{nh_f}\partial ^xP\right) +\frac{\Gamma _x}{\tau _f}\nonumber \\{} & {} \quad -\omega _c\Gamma _y-qE=0, \end{aligned}$$
(B.72)
$$\begin{aligned}{} & {} \frac{\left( \omega _f-h_f\right) }{T}\left( \partial ^yT-\frac{T}{nh_f}\partial ^yP\right) +\frac{\Gamma _y}{\tau _f}\nonumber \\{} & {} \quad +\omega _c\Gamma _x+\tau _f\omega _cqE=0. \end{aligned}$$
(B.73)

By solving Eqs. (B.72) and (B.73), \(\Gamma _x\) and \(\Gamma _y\) are respectively determined as

$$\begin{aligned} \nonumber \Gamma _x= & {} \frac{qE\tau _f\left( 1-\omega _c^2\tau _f^2\right) }{1+\omega _c^2\tau _f^2}-\frac{\tau _f\left( \omega _f-h_f\right) }{T\left( 1+\omega _c^2\tau _f^2\right) }\left( \partial ^xT-\frac{T}{nh_f}\partial ^xP\right) \\ {}{} & {} -\frac{\omega _c\tau _f^2\left( \omega _f-h_f\right) }{T\left( 1+\omega _c^2\tau _f^2\right) }\left( \partial ^yT-\frac{T}{nh_f}\partial ^yP\right) , \end{aligned}$$
(B.74)
$$\begin{aligned} \nonumber \Gamma _y= & {} -\frac{2\omega _c\tau _f^2qE}{1+\omega _c^2\tau _f^2}-\frac{\tau _f\left( \omega _f-h_f\right) }{T\left( 1+\omega _c^2\tau _f^2\right) }\left( \partial ^yT-\frac{T}{nh_f}\partial ^yP\right) \\ {}{} & {} +\frac{\omega _c\tau _f^2\left( \omega _f-h_f\right) }{T\left( 1+\omega _c^2\tau _f^2\right) }\left( \partial ^xT-\frac{T}{nh_f}\partial ^xP\right) . \end{aligned}$$
(B.75)

Using the values of \(\Gamma _x\) and \(\Gamma _y\) in ansatz (29) and then simplifying, we get the infinitesimal change of the quark distribution function as

$$\begin{aligned} \nonumber \delta f_f= & {} \frac{2qE\tau _fv_x\beta f_f^0\left( 1-f_f^0\right) }{1+\omega _c^2\tau _f^2}-\frac{2qE\omega _c\tau _f^2v_y\beta f_f^0\left( 1-f_f^0\right) }{1+\omega _c^2\tau _f^2}\\{} & {} \nonumber -\beta ^2 f_f^0\left( 1-f_f^0\right) \frac{\tau _f(\omega _f-h_f)}{\left( 1+\omega _c^2\tau _f^2\right) } \\ {}{} & {} \nonumber \times \left[ v_x\left( \partial ^xT-\frac{T}{nh_f}\partial ^xP\right) +v_y\left( \partial ^yT-\frac{T}{nh_f}\partial ^yP\right) \right] \\{} & {} \nonumber -\beta ^2 f_f^0\left( 1-f_f^0\right) \\{} & {} \nonumber \times \frac{\omega _c\tau _f^2(\omega _f-h_f)}{\left( 1+\omega _c^2\tau _f^2\right) }\left[ v_x\left( \partial ^yT-\frac{T}{nh_f}\partial ^yP\right) \right. \\{} & {} \left. -v_y\left( \partial ^xT-\frac{T}{nh_f}\partial ^xP\right) \right] .\end{aligned}$$
(B.76)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, S., Dash, S. Effects of weak magnetic field and finite chemical potential on the transport of charge and heat in hot QCD matter. Eur. Phys. J. A 59, 25 (2023). https://doi.org/10.1140/epja/s10050-023-00941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00941-9

Navigation