Skip to main content

Advertisement

Log in

Low-energy deuteron–alpha elastic scattering in cluster effective field theory

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper, we study the low-energy \(d{-}\alpha \) elastic scattering within the two-body cluster effective field theory (EFT) framework. The importance of the \(d(\alpha ,\alpha ) d\) scattering in the \(^6 \text {Li} \) production reaction leads us to study this system in an effective way. In the beginning, the scattering amplitudes of each channel are written in a cluster EFT with two-body formalism. Using the effective range expansion analysis for the elastic scattering phase shift of S, P and D partial waves, the unknown EFT low-energy coupling constants are determined and the leading and next-to-leading orders EFT results for the phase shift in each channel are presented. To verify the accuracy of the results, we compare experimental phase shift and differential cross section data with obtained results. The accuracy of the EFT results and consistency with the experimental data indicate that the EFT is an effective approach for describing low-energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available upon request from the authors.]

References

  1. L.C. McIntyre, W. Haeberli, Nucl. Phys. A 91, 382–398 (1967)

    ADS  Google Scholar 

  2. B. Jenny, W. Grüebler, V. König, P.A. Schmelzbach, C. Schweizer, Nucl. Phys. A 397, 61–101 (1983)

    ADS  Google Scholar 

  3. V. König, W. Grüebler, P.A. Schmelzbach, P. Marmier, Nucl. Phys. A 148, 380 (1970)

    ADS  Google Scholar 

  4. W. Grüebler, R.E. Brown, F.D. Correll, R.A. Hardekopf, N. Jarmie, G.G. Ohlsen, Nucl. Phys. A 331, 61–74 (1979)

    ADS  Google Scholar 

  5. M. Bruno, F. Cannata, M. D’Agostino, C. Maroni, I. Massa, M. Lombardi, Il Nuovo Cimento A 1982(68), 35–55 (1982)

    ADS  Google Scholar 

  6. I. Koersner, L. Glantz, A. Johansson, B. Sundqvist, H. Nakamura, H. Noya, Nucl. Phys. A 286, 431–450 (1977)

    ADS  Google Scholar 

  7. I. Slaus, J.M. Lambert, P.A. Treado, F.D. Correll, R.E. Brown, R.A. Hardekopf, N. Jarmie, Y. Koike, W. Grüebler, Nucl. Phys. A 397, 205–224 (1983)

    ADS  Google Scholar 

  8. P. Niessen, S. Lemaítre, K.R. Nyga, G. Rauprich, R. Reckenfelderbäumer, L. Sydow, H. Paetz gen Schieck, P. Doleschall, Phys. Rev. C 45, 2570 (1992)

    ADS  Google Scholar 

  9. Y. Koike, Nucl. Phys. A 301, 411–428 (1978)

    ADS  Google Scholar 

  10. K. Hahn, E.W. Schmid, P. Doleschall, Resonating group Faddeev approach to deuteron-alpha scattering. Phys. Rev. C 31, 325 (1985)

    ADS  Google Scholar 

  11. A. Galonsky, R.A. Douglas, W. Haeberli, M.T. McEllistrem, H.T. Richards, Phys. Rev. 98, 586 (1955)

    ADS  Google Scholar 

  12. L.S. Senhouse Jr., T.A. Tombrello, Nucl. Phys. 57, 624–642 (1964)

    Google Scholar 

  13. K.W. Allen, E. Almqvist, C.B. Bigham, Proc. Phys. Soc. 75, 913 (1960)

    ADS  Google Scholar 

  14. W.C. Barber, J. Goldemberg, G.A. Peterson, Y. Torizuka, Nucl. Phys. 41, 461–481 (1963)

  15. T.A. Romanowski, V.H. Voelker, Photoneutron cross sections of \(^6 \text{ Li }\) and \(^7\text{ Li }\). Phys. Rev. 113, 886 (1959)

    ADS  Google Scholar 

  16. D.R. Inglis, Rev. Mod. Phys. 25, 390 (1953)

    ADS  Google Scholar 

  17. P.H. Wackman, N. Austern, Nucl. Phys. 30, 529–567 (1962)

    Google Scholar 

  18. A. Deltuva, Phys. Rev. C 74, 064001 (2006)

    ADS  Google Scholar 

  19. P.F. Bedaque, U. Van Kolck, Annu. Rev. Nucl. Part. Sci. 52, 339–396 (2002)

    ADS  Google Scholar 

  20. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259–390 (2006)

    ADS  MathSciNet  Google Scholar 

  21. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329–355 (1998)

    ADS  Google Scholar 

  22. D.R. Phillips, G. Rupak, M.J. Savage, Phys. Lett. B 473, 209–218 (2000)

    ADS  Google Scholar 

  23. J.W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386–412 (1999)

    ADS  Google Scholar 

  24. H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G 44, 103002 (2017)

    ADS  Google Scholar 

  25. S.-I. Ando, Few Body Syst. 55, 191–201 (2014)

    ADS  Google Scholar 

  26. S.-I. Ando, G.S. Yang, Y. Oh, Phys. Rev. C 89, 014318 (2014)

    ADS  Google Scholar 

  27. M. Moeini Arani, Int. J. Mod. Phys. E 28, 1950004 (2019)

    Google Scholar 

  28. M. Moeini Arani, Eur. Phys. J. A 56, 1–11 (2020)

    Google Scholar 

  29. C.A. Bertulani, H.-W. Hammer, U. Van Kolck, Nucl. Phys. A 712, 37–58 (2002)

    ADS  Google Scholar 

  30. P.F. Bedaque, H.-W. Hammer, U. Van Kolck, Phys. Lett. B 569, 159–167 (2003)

    ADS  Google Scholar 

  31. C. Ji, C. Elster, D.R. Phillips, Phys. Rev. C 90, 044004 (2014)

  32. M. Moeini Arani, M. Radin, S. Bayegan, Prog. Theor. Exp. Phys. 2017, 093D07 (2017)

    Google Scholar 

  33. X. Kong, F. Ravndal, Phys. Rev. C 64, 044002 (2001)

    ADS  Google Scholar 

  34. X.K.F. Ravndal, Nucl. Phys. A 665, 137 (2000)

    ADS  Google Scholar 

  35. T. Barford, M.C. Birse, Phys. Rev. C 67, 064006 (2003)

    ADS  Google Scholar 

  36. S.-I. Ando, J.W. Shin, C.H. Hyun, S.W. Hong, Phys. Rev. C 76, 064001 (2007)

    ADS  Google Scholar 

  37. S.-I. Ando, M.C. Birse, Phys. Rev. C 78, 024004 (2008)

    ADS  Google Scholar 

  38. V. Lensky, M.C. Birse, Eur. Phys. J. A 47, 1–10 (2011)

    Google Scholar 

  39. S.-I. Ando, Eur. Phys. J. A 52, 1–8 (2016)

    ADS  Google Scholar 

  40. R. Higa, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171–188 (2008)

    ADS  Google Scholar 

  41. R. Higa, G. Rupak, A. Vaghani, Eur. Phys. J. A 54, 1–12 (2018)

    Google Scholar 

  42. M. L. Goldberger, K. M. Watson, Collision Theory (Wiley, New York-London-Sydney 1964)

  43. B.R. Holstein, Phys. Rev. D 60, 114030 (1999)

    ADS  Google Scholar 

  44. M. Abromowitz, I.A. Stegun, Applied Mathematics Series (US Government Printing Office, Washington DC, 1965), p. 944

  45. D. Gaspard, J. Math. Phys. 59, 112104 (2018)

    ADS  MathSciNet  Google Scholar 

  46. H.A. Bethe, Phys. Rev. 76, 38 (1949)

    ADS  Google Scholar 

  47. S.-I. Ando, R.H. Cyburt, S.W. Hong, C.H. Hyun, Phys. Rev. C 74, 025809 (2006)

    ADS  Google Scholar 

  48. J. Braun, W. Elkamhawy, R. Roth, H.-W. Hammer, J. Phys. G 46, 115101 (2019)

    ADS  Google Scholar 

  49. G. Rupak, Int. J. Mod. Phys. E 25, 1641004 (2016)

    ADS  Google Scholar 

  50. E. Ryberg, C. Forssén, H.-W. Hammer, L. Platter, Eur. Phys. J. A 50, 1–13 (2014)

    Google Scholar 

  51. R.A. Kamand, An Doctoral dissertation, University of South Carolina (2013)

  52. S.-I. Ando, J.W. Shin, C.H. Hyun, S.W. Hong, Phys. Rev. C 76, 064001 (2007)

  53. P.A. Schmelzbach, W. Grüebler, V. König, P. Marmier, Nucl. Phys. A 184, 193–213 (1972)

  54. W. Grüebler, P.A. Schmelzbach, V. König, R. Risler, D. Boerma, Nucl. Phys. A 242, 265–284 (1975)

    ADS  Google Scholar 

  55. G.G. Ohlsen, P.G. Young, Phys. Rev. 136, B1632 (1964)

    ADS  Google Scholar 

  56. J.M. Blair, G. Freier, E.E. Lampi, W. Sleator Jr., Phys. Rev. 75, 1678 (1949)

    ADS  Google Scholar 

  57. S.-I. Ando, J.W. Shin, Ch. Hyun, S.-W. Hong, Phys. Rev. C 76, 064001 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Iran National Science Foundation (INSF) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Radin.

Additional information

Communicated by Arnau Rios Huguet.

Appendix A: Derivation of the elastic scattering amplitudes

Appendix A: Derivation of the elastic scattering amplitudes

In this section we present the detailed derivation of the \(d{-}\alpha \) elastic scattering amplitudes for all possible partial waves, \(l=0,~1,~2\).

1.1 S-wave channel

According to the Lagrangian (17), the strong interaction in the \(\xi ={^3\!S_1}\) channel of the \(d{-}\alpha \) system can be described using the up-to-NLO Lagrangian

$$\begin{aligned} {} {\mathcal {L}}^{[\xi ]}= & {} \phi ^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_\alpha }\right) \phi +d_i^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_d}\right) d_i\nonumber \\{} & {} +\,\eta ^{[\xi ]}{\bar{t}}_i^{\,\dagger }\Bigg [i\partial _0+\frac{\nabla ^2}{2m_t}-{\Delta }^{[\xi ]}\Bigg ]{\bar{t}}_i \nonumber \\{} & {} +h^{[\xi ]}{\bar{t}}_i^{\,\dagger }\Bigg [i\partial _0+\frac{\nabla ^2}{2m_t}\Bigg ]^2{\bar{t}}_i +\,g^{[\xi ]}\Big [{\bar{t}}^{\,\dagger }_i(\phi \, d_i)+h.c.\Big ],\nonumber \\ \end{aligned}$$
(A.1)

where \({\bar{t}}_i\) is the vector auxiliary field of the \({^3\!S_1}\) dimeron. According to the Feynman diagram of Fig. 2, the up-to-NLO EFT scattering amplitude in the \(^3\!S_1\) channel can be written as

$$\begin{aligned} {}{} & {} -iT_{CS}^{[\xi ]}e^{2i\sigma _0}\nonumber \\{} & {} \quad =(-ig^{[\xi ]})^2 \, \chi _{p'}^{*(-)}({\textbf{0}})\, \varepsilon _j^{d*}\,\varepsilon _j^{{\bar{t}}}\,iD^{[\xi ]}(E,{\textbf {0}})\varepsilon _i^{{\bar{t}}*}\, \varepsilon _i^d\,\chi _p^{(+)}({\textbf{0}})\nonumber \\{} & {} \quad =-ig^{[\xi ]^2}\!D^{[\xi ]}(E,{\textbf {0}})W_{0}(\eta _p)C_{0}^2(\eta _p)e^{2i\sigma _0}, \end{aligned}$$
(A.2)

where \(\varepsilon _i^{d}\) and \(\varepsilon _i^{{\bar{t}}}\) are polarization vectors of the deuteron and dimeron auxiliary fields respectively, which satisfy the relations

$$\begin{aligned} {} \varepsilon _j^{{\bar{t}}*} \,\varepsilon _i^{{\bar{t}}}= \delta _{ij},\quad \varepsilon _j^{d*} \,\varepsilon _i^{d}=\frac{1}{3}\delta _{ij}. \end{aligned}$$
(A.3)

In the last equality of Eq. (A.2) we use

$$\begin{aligned} {} \chi _{p'}^{*(-)}({\textbf{0}})\chi _p^{(+)}({\textbf{0}})=W_{0}(\eta _p)\,C_{0}^2(\eta _p) e^{2i\sigma _0}. \end{aligned}$$
(A.4)

According to the diagrams in second line of Fig. 2, The S-wave up-to-NLO full propagator is given by

$$\begin{aligned} {} D^{[\xi ]}(E,{\textbf {0}})= & {} \frac{\eta ^{[\xi ]}}{E-{\Delta }^{[\xi ]}-\eta ^{[\xi ]}g^{[\xi ]^2}J_0(E)}\nonumber \\{} & {} \times \left[ \underbrace{\,1_{_{_{_{_{_{_{_{_{}}}}}}}}}}_{\textrm{LO}}-\underbrace{\frac{\eta ^{[\xi ]}h^{[\xi ]}E^2}{E-{\Delta }^{[\xi ]}-\eta ^{[\xi ]}g^{[\xi ]^2}J_0(E)}}_{{\textrm{NLO}}~ {\textrm{correction}}}\right] ,\nonumber \\ \end{aligned}$$
(A.5)

where the fully dressed bubble \(J_{0}\), which is described the propagation of the particles from initially zero separation and back to zero separation, is written as

$$\begin{aligned} {} J_{0}(E)= & {} \lim _{{\textbf{r}}^{\prime },{\textbf{r}}\rightarrow {\textbf{0}}}\langle {\textbf{r}}^{\prime }|G_{C}^{(+)}{(E)}|{\textbf{r}}\rangle \nonumber \\= & {} 2\mu \int \frac{d^{3}q}{(2\pi )^{3}}\frac{\chi _{q}^{(+)}({\textbf{0}})\chi _{q}^{*(+)}({\textbf{0}})}{2\mu E-q^{2}+i\epsilon } \nonumber \\= & {} 2\mu \!\int \!\frac{d^{3}q}{(2\pi )^{3}}\frac{2\pi \eta _q}{e^{2\pi \eta (q)}-1}\,\frac{1}{p^2-q^{2}+i\epsilon }\nonumber \\= & {} \underbrace{2\mu \!\int \! \frac{d^{3}q}{(2\pi )^{3}}\frac{2\pi \eta _q}{e^{2\pi \eta _q}-1}\,\frac{1}{q^2}\frac{p^2}{p^2-q^{2}+i\epsilon }}_{J^{fin}_{0}}\nonumber \\{} & {} \underbrace{-2\mu \!\int \! \frac{d^{3}q}{(2\pi )^{3}}\frac{2\pi \eta _q}{e^{2\pi \eta _q}-1}\,\frac{1}{q^2}}_{J^{div}_{0}}. \end{aligned}$$
(A.6)

Calculation of the finite part of the S-wave Coulomb bubble leads to [33]

$$\begin{aligned} {} J^{fin}_0=-\frac{\mu }{\pi }k_CW_0(\eta _p)H(\eta _p)=-\frac{\mu }{2\pi }H_0(\eta _p), \end{aligned}$$
(A.7)

and taking into account the power divergence subtraction (PDS) regularization scheme, the momentum independent divergent part is obtained as [33]

$$\begin{aligned} J^{div}_0= & {} -\frac{\mu }{2\pi }\Bigg \{ \frac{\kappa }{D-3}\nonumber \\ {}{} & {} +2k_C \Bigg [\frac{1}{D-4}-\text {ln}\Bigg (\frac{\kappa \sqrt{\pi }}{2k_C}\Bigg )-1+\frac{3}{2}C_E\Bigg ]\Bigg \}, \end{aligned}$$
(A.8)

with D the dimensionality of spacetime, \(\kappa \) the renormalization mass scale and \(C_E\) Euler–Mascheroni constant. Instead of PDS regularization scheme we can use a simple momentum cutoff \({\Lambda }\) to make the divergent integral \(J^{div}_0\) finite. It then becomes [33]

$$\begin{aligned} J^{div}_0= & {} -\frac{2\mu }{\pi }\!\int _{0}^{{\Lambda }}\!dq \frac{\eta _q}{e^{2\pi \eta _q}-1}\nonumber \\= & {} -\frac{2\mu k_C}{\pi }\!\int _{ \frac{2\pi k_C}{{\Lambda }}}^{\infty }\,\! \frac{dx}{x(e^{x}-1)}\nonumber \\= & {} -\frac{2\mu k_C}{\pi }\Bigg \{\int _{0}^{\infty }\! \frac{dx}{x(e^{x}-1)}-\int _{0}^{ \frac{2\pi k_C}{{\Lambda }}}\frac{dx}{x(e^{x}-1)}\Bigg \}\nonumber \\= & {} -\frac{2\mu k_C}{\pi }\Bigg \{{\Gamma }(0)\zeta (0)-\int _{0}^{ \frac{2\pi k_C}{{\Lambda }}}dx\Bigg (\frac{1}{x^2}-\frac{1}{2x}+{\mathcal {O}}\,(x^0)\Bigg )\Bigg \}\nonumber \\= & {} -\frac{2\mu k_C}{\pi }\Bigg (\frac{1}{2}C_E+\frac{{\Lambda }}{2\pi k_C}-\frac{1}{2}\ln \frac{{\Lambda }}{k_C}+{\mathcal {O}}\,\left( \frac{2\pi k_C}{{\Lambda }}\right) \Bigg ),\nonumber \\ \end{aligned}$$
(A.9)

where in the second line we use changing integral variable , and in the last line we use

$$\begin{aligned} {\Gamma }(0)= & {} \lim _{\epsilon \rightarrow 0}\Bigg (\frac{1}{\epsilon }-C_E\Bigg ), \end{aligned}$$
(A.10)
$$\begin{aligned} \zeta (0)= & {} \lim _{\epsilon \rightarrow 0}\Bigg (-\frac{1}{2}(1+\epsilon \ln 2\pi )+{\mathcal {O}}\,(\epsilon ^2)\Bigg ). \end{aligned}$$
(A.11)

Thus, the up-to-NLO EFT scattering amplitude of Eq. (A.2) is rewritten

$$\begin{aligned}{} & {} T^{[\xi ]}_{CS}=-\frac{2\pi }{\mu }\frac{C_{0}^2(\eta _p)W_{0}(\eta _p)}{\left( \frac{2\pi {\Delta }^{[\xi ]}}{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu }+\frac{2\pi }{\mu }J^{div}_0\right) -\frac{1}{2}\left( \frac{2\pi }{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu ^2}\right) p^2-H_0(\eta _p)} \nonumber \\{} & {} \quad \times \left[ \underbrace{\,1_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}}}}}}_{\mathrm {\!\!LO}}\!\!\!+\underbrace{\frac{1}{4}\frac{\left( \frac{2\pi h^{[\xi ]}}{g^{[\xi ]^2}\!\mu ^3}\right) }{\left( \frac{2\pi {\Delta }^{[\xi ]}}{\eta ^{[\xi ]}g^{[\xi ]^2}\mu }+\frac{2\pi }{\mu }J^{div}_0\right) -\frac{1}{2}\left( \frac{2\pi }{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu ^2}\right) p^2-H_0(\eta _p)}p^4\,\,}_{\textrm{NLO}~\textrm{correction}}\!\!\!\!\right] \!.\nonumber \\ \end{aligned}$$
(A.12)

Regardless of which renormalization scheme we use to calculate the divergent integral \(J^{div}_0\), this momentum independent divergence part is absorbed by the parameter \({\Delta }^{[\xi ]}\) via introducing the renormalized parameter \({\Delta }^{[\xi ]}_R\) as [40]

$$\begin{aligned} {\Delta }^{[\xi ]}_R={\Delta }^{[\xi ]}+\eta ^{[\xi ]}g^{[\xi ]^2}J^{div}_0. \end{aligned}$$
(A.13)

Finally, the up-to-NLO scattering amplitude for \(\xi ={^3\!S_1}\) partial wave is expressed as

$$\begin{aligned} T^{[\xi ]}_{CS}= & {} \frac{2\pi }{\mu }\frac{C_{0}^2(\eta _p)W_{0}(\eta _p)}{\frac{2\pi {\Delta }_R^{[\xi ]}}{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu }-\frac{1}{2}\left( \frac{2\pi }{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu ^2}\right) p^2-H_0(\eta _p)}\nonumber \\ {}{} & {} \times \left[ \underbrace{\,\,1_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}}}}}}}}_{\textrm{LO}}+\!\underbrace{\frac{1}{4}\frac{\left( \frac{2\pi h^{[\xi ]}}{g^{[\xi ]^2}\!\mu ^3}\right) }{\frac{2\pi {\Delta }_R^{[\xi ]}}{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu }-\frac{1}{2}\left( \frac{2\pi }{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu ^2}\right) p^2-H_0(\eta _p)}p^4\,\,}_{\textrm{NLO}~\textrm{correction}}\!\!\right] .\nonumber \\ \end{aligned}$$
(A.14)

1.2 P-wave channels

The up-to-NLO Lagrangian for the strong interaction in the \(\xi =\) \({^3\!P_0}\) channel of the \(d{-}\alpha \) system can be written as

$$\begin{aligned} {} {\mathcal {L}}^{[\xi ]}= & {} \phi ^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_\alpha }\right) \phi +d_i^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_d}\right) d_i \nonumber \\{} & {} +\,\eta ^{[{\xi }]}t^\dagger \Bigg [i\partial _0 +\frac{\nabla ^2}{2m_t}-{\Delta }^{[{\xi }]}\Bigg ]t +h^{[{\xi }]}t^{\dagger }\Bigg [i\partial _0+\frac{\nabla ^2}{2m_t}\Bigg ]^2t\nonumber \\{} & {} +\sqrt{3}\,g^{[{\xi }]}\Big [t^{\dagger }(\phi {\mathcal {P}} _i d_i)+h.c.\Big ], \end{aligned}$$
(A.15)

where t is the scaler auxiliary field of the \(^3\!P_0\) dimeron. According to the Feynman diagrams of Fig. 2 we have

$$\begin{aligned}{} & {} -i3T^{[\xi ]}_{CS}P_1(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _1}\nonumber \\{} & {} \quad =3(-ig^{[\xi ]})^2[{\mathcal {P}}^*_j\chi _{p'}^{*(-)}({\textbf{0}})] \varepsilon _j^{d*} iD^{[\xi ]}(E,{\textbf {0}})\,\varepsilon _i^{d}\,[{\mathcal {P}}_i\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-3ig^{[\xi ]^2}D^{[\xi ]}(E,{\textbf {0}}) \varepsilon _j^{d*}\,\varepsilon _i^{d*}[\nabla _j\chi _{p'}^{*(-)}({\textbf{0}})][\nabla _i\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-ig^{[\xi ]^2}D^{[\xi ]}(E,{\textbf {0}}) C_0^2(\eta _p) W_1(\eta _p) P_1(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}}) e^{2i\sigma _1}, \end{aligned}$$
(A.16)

where in the last line, the following relation is used

$$\begin{aligned} {}{} & {} [\nabla _i \chi _{p'}^{*(-)}({\textbf{0}})][\nabla _i \chi _p^{(+)}({\textbf{0}})]=C^2_0(\eta _p)\, p'_ip_{i}\,(1+\eta _p^2)e^{2i\sigma _1}\nonumber \\{} & {} \quad =C^2_0(\eta _p)\, W_1(\eta _p) P_1(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _1}. \end{aligned}$$
(A.17)

The up-to-NLO strong interaction Lagrangian in the \(\xi ={^3\!P_1}\) channel is introduced as

$$\begin{aligned} {} {\mathcal {L}}^{[\xi ]}= & {} \phi ^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_\alpha }\right) \phi +d_i^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_d}\right) d_i\nonumber \\{} & {} +\,\eta ^{[\xi ]}t_i^\dagger \Bigg [i\partial _0+\frac{\nabla ^2}{2m_t}-{\Delta }^{[\xi ]}\Bigg ]t_i+h^{[\xi ]}t_i^{\dagger }\Bigg [i\partial _0+\frac{\nabla ^2}{2m_t}\Bigg ]^2t_i\nonumber \\{} & {} +\sqrt{\frac{3}{2}}\epsilon _{kji}\, g^{[\xi ]}\Big [t_k^{\dagger }(\phi {\mathcal {P}}_j d_i)+h.c.\Big ], \end{aligned}$$
(A.18)

where \(t_i\) denotes the vector field of the \(^3\!P_1\) dimeron. So, the scattering amplitude in the \(^3\!P_1\) channel is written as

$$\begin{aligned} {}{} & {} -i3T^{[\xi ]}_{CS}P_1(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _1}\nonumber \\{} & {} \quad =\frac{3}{2}(-ig^{[\xi ]})^2\, [{\mathcal {P}}^*_m\chi _{p'}^{*(-)}({\textbf{0}})] \epsilon _{lmj} \varepsilon _j^{d*}\,\varepsilon ^{t}_l\nonumber \\{} & {} \qquad \times iD^{[\xi ]}(E,{\textbf {0}})\epsilon _{ksi}\varepsilon _{k}^{t*}\,\varepsilon _i^{d}\,[{\mathcal {P}}_s\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-\frac{1}{2}\,ig^{[\xi ]^2}\, D^{[\xi ]}(E,{\textbf {0}})\,\epsilon _{kmi}\,\epsilon _{ksi} [\nabla _m\chi _{p'}^{*(-)}({\textbf{0}})]\,[\nabla _s\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-ig^{[\xi ]^2}D^{[\xi ]}(E,{\textbf {0}}) C_0^2(\eta _p) W_1(\eta _p) P_1(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}}) e^{2i\sigma _1}, \end{aligned}$$
(A.19)

with \(\varepsilon _i^{t}\) as the polarization vector of the \(^3\!P_1\) dimeron auxiliary field. Also, the strong interaction Lagrangian for the \(d{-}\alpha \) system in the \(\xi ={^3\!P_2}\) channel can be written as

$$\begin{aligned} {} {\mathcal {L}}^{[\xi ]}= & {} \phi ^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_\alpha }\right) \phi +d_i^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_d}\right) d_i \nonumber \\{} & {} +\,\eta ^{[\xi ]}t_{ij}^\dagger \Bigg [i\partial _0+\frac{\nabla ^2}{2m_t}-{\Delta }^{[\xi ]}\Bigg ]t_{ij}\nonumber \\{} & {} +h^{[\xi ]}t_{ij}^\dagger \Bigg [i\partial _0+\frac{\nabla ^2}{2m_t}\Bigg ]^2\!t_{ij}\nonumber \\ {}{} & {} +\frac{3}{\sqrt{5}} g^{[\xi ]}\Big [t_{ij}^{\dagger }(\phi {\mathcal {P}} _j d_i)+h.c.\Big ], \end{aligned}$$
(A.20)

where \(t_{ij}\) is the auxiliary tensor field of the \(^3\!P_2\) dimeron. Therefore, the scattering amplitude in the \(^3\!P_2\) channel is obtained as

$$\begin{aligned} {}{} & {} -3iT^{[\xi ]}_{CS}P_1(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _1}\nonumber \\{} & {} \quad =\frac{9}{5}(-ig^{[\xi ]})^2\,[{\mathcal {P}}^*_m\chi _{p'}^{*(-)}({\textbf{0}})] \varepsilon _j^{d*}\,\varepsilon _{jm}^t\nonumber \\{} & {} \qquad \times iD^{[\xi ]}(E,{\textbf {0}}) \varepsilon _{si}^{t*}\,\varepsilon _i^{d}\,[{\mathcal {P}}_s\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-ig^{[\xi ]^2}\!D^{[\xi ]}(E,{\textbf {0}}) C_0^2(\eta _p) W_1(\eta _p) P_1(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}}) e^{2i\sigma _1},\nonumber \\ \end{aligned}$$
(A.21)

with \(\varepsilon _{ij}\) as the polarization tensor of the \(^3\!P_2\) dimeron auxiliary field which satisfies the expression

$$\begin{aligned} {} \varepsilon _{jm}^t\,\varepsilon _{si}^{t*}=\frac{1}{2}\left( \delta _{js}\delta _{mi}+\delta _{ji}\delta _{ms}-\frac{2}{3}\delta _{jm}\delta _{si}\right) . \end{aligned}$$
(A.22)

The up-to-NLO full propagator for the \(^3\!P_0\), \(^3\!P_1\) and \(^3\!P_2\) channels is given by

$$\begin{aligned} {} D^{[\xi ]}(E,{\textbf {0}})= & {} \frac{\eta ^{[\xi ]}}{E-{\Delta }^{[\xi ]}-\frac{1}{3}\eta ^{[\xi ]}g^{[\xi ]^2}J_1(E)}\nonumber \\{} & {} \times \left[ \underbrace{1_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}}}_{\textrm{LO}}-\underbrace{\frac{\eta ^{[\xi ]}h^{[\xi ]}E^2}{E\!-{\Delta }^{[\xi ]}\!-\frac{1}{3}\eta ^{[\xi ]}g^{[\xi ]^2}J_1(E)}}_{\mathrm {NLO~corection}}\!\right] \!.\nonumber \\ \end{aligned}$$
(A.23)

The function \(J_1(E)\) is given by

$$\begin{aligned} J_1(E)= & {} 2\mu \!\!\int \! \!\frac{d^3 q}{(2 \pi )^3}\frac{[\nabla _i\chi _{{q}}^{(+)}({\textbf{0}})] [\nabla _i\chi _{{q}}^{*(+)}({\textbf{0}})]}{2\mu E -{q}^2+i\epsilon } \nonumber \\= & {} 2\mu \!\!\int \! \!\frac{d^3 q}{(2 \pi )^3}\frac{q^2 +k_C^2}{p^2-{q}^2+i\epsilon }\,\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}\nonumber \\= & {} 2\mu \!\!\int \!\! \frac{d^3 q}{(2 \pi )^3}\frac{q^2 }{p^2-{q}^2+i\epsilon }\,\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}+k_C^2J_0(E)\nonumber \\= & {} 2\mu \!\!\int \!\!\frac{d^3 q}{(2 \pi )^3}\frac{q^2-p^2 }{p^2-{q}^2+i\epsilon }\,\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}+(p^2+k_C^2)J_0(E)\nonumber \\= & {} W_1(\eta _p)J_0(E)\underbrace{-2\mu \int \frac{d^3 q}{(2 \pi )^3}\,\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}}_{J}. \end{aligned}$$
(A.24)

In the second line of Eq. (A.24) we use

$$\begin{aligned}{}[\nabla _i \chi _{q}^{(+)}({\textbf{0}})][\nabla _i \chi _q^{*(+)}({\textbf{0}})]=C^2_0(\eta _q)W_1(\eta _q). \end{aligned}$$
(A.25)

The integral J is divergent and independent of the external momentum p. According to the PDS regularization scheme it takes the form [40]

$$\begin{aligned} J=-4\pi \mu k_C^2 \Bigg ( k_C\zeta '(-2)+\frac{\kappa }{24}\Bigg ), \end{aligned}$$
(A.26)

where \(\zeta '\) is derivative of the Riemann zeta function and \(\zeta '(-2)\approx -0.0304\). If we use the cutoff regularization scheme the integral J takes the form

$$\begin{aligned} J= & {} -\frac{2\mu }{\pi }\!\int _{0}^{{\Lambda }}\!dq q^2 \frac{\eta _q}{e^{2\pi \eta _q}-1}\nonumber \\= & {} -8\pi \mu k^3_C\!\int _{\frac{2\pi k_C}{{\Lambda }}}^{\infty }\, \frac{dx}{x^3(e^{x}-1)} \nonumber \\= & {} -8\pi \mu k^3_C\Bigg \{\int _{0}^{\infty }\! \frac{dx}{x^3(e^{x}-1)}-\int _{0}^{\frac{2\pi k_C}{{\Lambda }}}\frac{dx}{x^3(e^{x}-1)}\Bigg \}\nonumber \\= & {} -8\pi \mu k^3_C\Bigg \{{\Gamma }(-2)\zeta (-2)\nonumber \\{} & {} -\int _{0}^{ \frac{2\pi k_C}{{\Lambda }}}dx\Bigg (\frac{1}{x^4}-\frac{1}{2x^3}+\frac{1}{12x^2}+{\mathcal {O}}\,(x^0)\Bigg )\Bigg \}\nonumber \\= & {} -8\pi \mu k^3_C\Bigg \{ 2\pi ^2C_E \,\zeta '(-2) +\frac{1}{3}\Bigg (\frac{{\Lambda }}{2\pi k_C }\Bigg )^{\!3}-\frac{1}{4}\Bigg (\frac{ {\Lambda }}{2\pi k_C}\Bigg )^{\!2}\nonumber \\{} & {} +\frac{1}{12}\Bigg (\frac{{\Lambda }}{2\pi k_C}\Bigg )+{\mathcal {O}}\left( \frac{2\pi k_C}{{\Lambda }}\right) \Bigg \}, \end{aligned}$$
(A.27)

where in the second line we use . Thus, \(J_1\) can be divided as \(J_1=J_1^{fin}+J_1^{div}\) with

$$\begin{aligned} J^{fin}_1= & {} W_1(\eta _p)J^{fin}_0=-\frac{\mu }{2\pi }H_1(\eta _p),\end{aligned}$$
(A.28)
$$\begin{aligned} J^{div}_1= & {} W_1(\eta _p)J^{div}_0+J=p^2J^{div}_0+(k_C^2J^{div}_0+J).\nonumber \\ \end{aligned}$$
(A.29)

Consequently, the up-to-NLO EFT scattering amplitude of Eqs. (A.16), (A.19) and (A.21) is rewritten as

$$\begin{aligned} T^{[\xi ]}_{CS}= & {} -\frac{2\pi }{\mu }\frac{C_{0}^2(\eta _p)W_{1}(\eta _p)}{\left( \frac{6\pi {\Delta }^{[\xi ]}}{\eta ^{[\xi ]}g^{[\xi ]^2}\mu }+\frac{2\pi }{\mu }(k_C^2J^{div}_0+J)\right) -\frac{1}{2}\left( \frac{6\pi }{\eta ^{[\xi ]}g^{[\xi ]^2}\mu ^2}+\frac{2\pi }{\mu }J^{div}_0\right) p^2-H_1(\eta _p)} \nonumber \\{} & {} \times \left[ \underbrace{\,\,1_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}}}}}_{\textrm{LO}}+\!\underbrace{\frac{1}{4}\frac{\left( \frac{6\pi h^{[\xi ]}}{g^{[\xi ]^2}\mu ^3}\right) }{\left( \frac{6\pi {\Delta }^{[\xi ]}}{\eta ^{[\xi ]}g^{[\xi ]^2}\mu }+\frac{2\pi }{\mu }(k_C^2J^{div}_0+J)\right) -\frac{1}{2}\left( \frac{6\pi }{\eta ^{[\xi ]}g^{[\xi ]^2}\mu ^2}+\frac{2\pi }{\mu }J^{div}_0\right) p^2-H_1(\eta _p)}p^4\,\,}_{\textrm{NLO}~\textrm{correction}}\!\!\right] . \end{aligned}$$
(A.30)

The function \(J_1^{div}\) has two divergences, momentum independent and momentum-squared. Regardless of PDS or cutoff renormalization scheme are used to calculate the divergent integrals \(J_0^{div}\) and J, these momentum independent and momentum-squared divergence parts are absorbed by the parameters \({\Delta }^{[\xi ]}\), \(g^{[\xi ]}\) and \(h^{[\xi ]}\) via introducing the renormalized parameters \({\Delta }_R^{[\xi ]}\), \(g_R^{[\xi ]}\) and \(h_R^{[\xi ]}\) as

$$\begin{aligned} {\Delta }^{[\xi ]}_R&=\frac{{\Delta }^{[\xi ]}+\frac{1}{3}\eta ^{[\xi ]}g^{[\xi ]^2} (k_C^2J^{div}_0+J)}{1+\frac{1}{3}\eta ^{[\xi ]}g^{[\xi ]^2}\mu J^{div}_0}, \end{aligned}$$
(A.31)
$$\begin{aligned} \frac{1}{g_R^{[\xi ]^2}}&=\frac{1}{g^{[\xi ]^2}}+\frac{1}{3}\eta ^{[\xi ]}\mu J^{div}_0, \end{aligned}$$
(A.32)
$$\begin{aligned} h_R^{[\xi ]}&=\frac{h^{[\xi ]}}{1+\frac{1}{3}\eta ^{[\xi ]}g^{[\xi ]^2}\mu J^{div}_0}. \end{aligned}$$
(A.33)

Finally, the up-to-NLO Coulomb-subtracted EFT scattering amplitude for \(^3\!P_0\), \(^3\!P_1\) and \(^3\!P_2\) channels are obtained

$$\begin{aligned} {} T^{[\xi ]}_{CS}= & {} -\frac{2\pi }{\mu }\frac{ C_0^2(\eta _p)W_1(\eta _p) }{\frac{6\pi {\Delta }_{\!R}^{[\xi ]}}{\eta ^{[\xi ]}g_{\!R}^{[\xi ]^2}\mu }-\frac{1}{2}\left( \frac{6\pi }{\eta ^{[\xi ]}g_{\!R}^{[\xi ]^2}\mu ^2}\right) p^2-H_1(\eta _p)} \!\nonumber \\{} & {} \times \left[ \underbrace{\,\,1_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{}}}}}}}}}}}}}}}}}}}_{\textrm{LO}}+\underbrace{\frac{1}{4}\frac{\left( \frac{6\pi h_{\!R}^{[\xi ]}}{g_{\!R}^{[\xi ]^2}\mu ^3}\right) }{\frac{6\pi {\Delta }_{\!R}^{[\xi ]}}{\eta ^{[\xi ]}g_{\!R}^{[\xi ]^2}\mu }-\frac{1}{2}\left( \frac{6\pi }{\eta ^{[\xi ]}g_{\!R}^{[\xi ]^2}\mu ^2}\right) p^2-H_1(\eta _p)}p^4\,}_{\mathrm {NLO~corection}}\!\!\right] \!,\nonumber \\ \end{aligned}$$
(A.34)

1.3 D-wave channels

The Lagrangian for the strong \(d{-}\alpha \) interaction in the \(\xi =\) \({^3D_1}\) channel is written as

$$\begin{aligned} {} {\mathcal {L}}^{[\xi ]}= & {} \phi ^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_\alpha }\right) \phi +d_i^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_d}\right) d_i\nonumber \\{} & {} +\,{\tilde{t}}_{i}^{\,\dagger }\Bigg [\eta ^{[\xi ]}\left( i\partial _0+\frac{\nabla ^2}{2m_t}-{\Delta }^{[\xi ]}\right) \Bigg ]{\tilde{t}}_{i}\nonumber \\ 3{} & {} +{\tilde{t}}_{i}^{\,\dagger }\Bigg [h^{[\xi ]}\left( i\partial _0+\frac{\nabla ^2}{2m_t}\right) ^2\Bigg ]{\tilde{t}}_{i}\nonumber \\{} & {} +\frac{3}{\sqrt{2}}\,g^{[\xi ]}\Big [{\tilde{t}}_{j}^{\,\dagger }(\phi \,\tau _{ji} d_i)+h.c.\Big ], \end{aligned}$$
(A.35)

where \({\tilde{t}}_i\) is the vector field of the \({^3\!D_1}\) dimeron. Using the Lagrangian (A.35), the Coulomb-subtracted amplitude in \({^3\!D_1}\) partial wave is evaluated by

$$\begin{aligned} {}{} & {} -i5T^{[\xi ]}_{CS}P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2}\nonumber \\{} & {} \quad =\frac{9}{2}(-ig^{[\xi ]})^2[\tau ^*_{jl}\chi _{p'}^{*(-)}\!({\textbf{0}})] \varepsilon _j^{d*}\varepsilon ^{{\tilde{t}}}_l iD^{[\xi ]}(E,{\textbf {0}})\varepsilon _{k}^{{\tilde{t}}*}\varepsilon _i^{d}[\tau _{ki}\chi _p^{(+)}\!({\textbf{0}})]\nonumber \\{} & {} \quad =-\frac{3}{2}ig^{[\xi ]^2} D^{[\xi ]}(E,{\textbf {0}}) [\tau ^*_{ki}\chi _{p'}^{*(-)}({\textbf{0}})]\,[\tau _{ki}\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-ig^{[\xi ]^2} D^{[\xi ]}(E,{\textbf {0}})\,C_0^2(\eta _p)W_2(p) P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2}, \end{aligned}$$
(A.36)

where \(\varepsilon ^{{\tilde{t}}}_i\) is the vector auxiliary field of the \({^3\!D_1}\) dimeron and in the last equality we use

$$\begin{aligned}{} & {} [\tau ^*_{ki}\chi _{p'}^{*(-)}\!({\textbf{0}})][\tau _{ki}\chi _p^{(+)}\!({\textbf{0}})]\nonumber \\{} & {} \quad =\frac{1}{4}(p'_k p_k \,p'_ip_i-\frac{1}{3}p'^{2}p^2\delta _{ki}) C^2_0(\eta _p)(1+\eta _p^2)(4+\eta _p^2)e^{2i\sigma _2}\nonumber \\{} & {} \quad =\frac{1}{6}C^2_0(\eta _p)p^4(1+\eta _p^2)(4+\eta _p^2)P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2}\nonumber \\{} & {} \quad =\frac{2}{3}W_2(p)P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2}. \end{aligned}$$
(A.37)

In order to calculate the Coulomb-subtracted EFT amplitude of \(d{-}\alpha \) scattering in the \(\xi ={^3\!D_2}\) channel, we introduce the strong interaction in this channel using the Lagrangian

$$\begin{aligned} {} {\mathcal {L}}^{[\xi ]}= & {} \phi ^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_\alpha }\right) \phi +d_i^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_d}\right) d_i\nonumber \\{} & {} +\,{\tilde{t}}_{ij}^{\,\dagger }\Bigg [\eta ^{[\xi ]}\left( i\partial _0+\frac{{\nabla } ^2}{2m_t}-{\Delta }^{[\xi ]}\right) +h^{[\xi ]} \left( i\partial _0+\frac{\nabla ^2}{2m_t}\right) ^2\Bigg ]{\tilde{t}}_{ij}\nonumber \\{} & {} +\sqrt{\frac{3}{2}}\epsilon _{lji} \,g^{[\xi ]}[{\tilde{t}}_{kl}^{\,\dagger }(\phi \,\tau _{kj} d_i)+h.c.], \end{aligned}$$
(A.38)

with \({\tilde{t}}_{ij}\) as the \({^3\!D_2}\) tensor auxiliary field. So, we have

$$\begin{aligned} {}{} & {} -i5T^{[\xi ]}_{CS}P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2}\nonumber \\{} & {} \quad =\frac{3}{2}(\!-ig^{[\xi ]})^2[\tau ^*_{mn} \chi _{p'}^{*(-)}({\textbf{0}})] \varepsilon _j^{*d}\epsilon _{snj}\varepsilon _{ms}^{{\tilde{t}}}\nonumber \\{} & {} \qquad \times iD^{[\xi ]}(E,{\textbf {0}}) \varepsilon _{kp}^{*{\tilde{t}}}\,\epsilon _{pli} \,\varepsilon _i^{d}\,[\tau _{kl}\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-\frac{3}{2}ig^{[\xi ]^2}D^{[\xi ]}(E,{\textbf {0}}) [\tau ^*_{ki}\chi _{p'}^{*(-)}({\textbf{0}})][\tau _{ki}\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad =-ig^{[\xi ]^2} D^{[\xi ]}(E,{\textbf {0}})\,C_0^2(\eta _p) W_2(p) P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2},\nonumber \\ \end{aligned}$$
(A.39)

Also, the strong interaction Lagrangian of the \(d{-}\alpha \) system in the \(\xi ={^3\!D_3}\) channel can be described as

$$\begin{aligned} {} {\mathcal {L}}^{[\xi ]}= & {} \phi ^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_\alpha }\right) \phi +d_i^{\dagger }\left( i\partial _0+\frac{\nabla ^2}{2m_d}\right) d_i\nonumber \\{} & {} +\sqrt{\frac{45}{8}} g^{[\xi ]}[{\tilde{t}}_{ijk}^{\,\dagger }(\phi \tau _{ij} d_k)+h.c.]\nonumber \\{} & {} +\,{\tilde{t}}_{ijk}^{\,\dagger }\Bigg [\eta ^{[\xi ]}\left( i\partial _0+\frac{\nabla ^2}{2m_t}-{\Delta }^{[\xi ]}\right) \Bigg ]{\tilde{t}}_{ijk}\nonumber \\{} & {} +\,h^{[\xi ]} \left( i\partial _0+\frac{\nabla ^2}{2m_t}\right) ^2\Bigg ]{\tilde{t}}_{ijk}, \end{aligned}$$
(A.40)

where \(t_{ijk}\) indicates the auxiliary tensor field of the \(^3\!D_3\) dimeron. According to the Feynman diagram of Fig. 2, we have

$$\begin{aligned} {}{} & {} -i5T^{[\xi ]}_{CS}P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2}\nonumber \\{} & {} \quad =\frac{45}{8}(-ig^{[\xi ]})^2 [\tau ^*_{kl}\chi _{p'}^{(-)*}({\textbf{0}})] \varepsilon ^{*d}_{j}\varepsilon _i^{d} iD^{[\xi ]}(E,{\textbf {0}})\nonumber \\{} & {} \qquad \times \,\varepsilon ^{{\tilde{t}}}_{klj} \varepsilon _{mni}^{*{\tilde{t}}}\,[\tau _{mn}\chi _p^{(+)}({\textbf{0}})]\nonumber \\{} & {} \quad = -ig^{[\xi ]^2} D^{[\xi ]}(E,{\textbf {0}})\,C_0^2(\eta _p) W_2(p) P_2(\hat{{{\textbf {p}}}}'\cdot \hat{{{\textbf {p}}}})e^{2i\sigma _2},\nonumber \\ \end{aligned}$$
(A.41)

where \(\varepsilon _{ijk}\) denotes the tensor polarization of \(^3\!D_3\) auxiliary field which satisfies the following relation

$$\begin{aligned} \varepsilon ^{{\tilde{t}}}_{klj} \varepsilon _{mni}^{*{\tilde{t}}}= & {} \frac{1}{6}\bigg [\!-\frac{2}{5}\bigg \{\delta _{mn}(\delta _{ij}\delta _{kl}+\delta _{ik}\delta _{jl}+\delta _{il}\delta _{jk})\nonumber \\{} & {} +(m\! \leftrightarrow \!l )+(n \!\leftrightarrow \!l )\bigg \} +(\delta _{il}\delta _{jm}\delta _{kn} +\delta _{il}\delta _{jn}\delta _{km})\nonumber \\{} & {} +(i \rightarrow \! j\rightarrow \!k\rightarrow \! i)+(i \rightarrow k\rightarrow j \rightarrow i)\bigg ].\nonumber \\ \end{aligned}$$
(A.42)

The full propagator for D waves is expressed by

$$\begin{aligned} {} D^{[\xi ]}(E,{\textbf {0}})=\frac{\eta ^{[\xi ]}}{E-{\Delta }^{[\xi ]}+h^{[\xi ]}E^2-\frac{1}{5}\eta ^{[\xi ]}g^{[\xi ]^2}J_2(E)}, \end{aligned}$$
(A.43)

with

$$\begin{aligned} J_2(E)= & {} \frac{3}{2}\Bigg \{2\mu \int \frac{d^3 q}{(2 \pi )^3}\frac{[\tau _{ij}\chi _{{q}}^{(+)}({\textbf{0}})] [\tau _{ij}\chi _{{q}}^{*(+)}({\textbf{0}})]}{2\mu E -{q}^2+i\epsilon }\Bigg \} \nonumber \\= & {} \frac{\mu }{2} \int \frac{d^3 q}{(2 \pi )^3}\frac{4q^4 +5q^2k_C^2+k_C^4}{p^2-{q}^2+i\epsilon }\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}\nonumber \\= & {} \frac{5}{4}k_C^2J_1(p)+(p^4-k_C^4)J_0(p)\nonumber \\{} & {} +2\mu \int \frac{d^3 q}{(2 \pi )^3}\frac{q^4-p^4 }{p^2-{q}^2+i\epsilon }\,\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}\nonumber \\= & {} \frac{5}{4}k_C^2J_1(p)+(p^4-k_C^4)J_0(p)+p^2J\nonumber \\{} & {} -2\mu \int \frac{d^3 q}{(2 \pi )^3}q^2\,\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}\nonumber \\= & {} W_2(p)J_0(p)-(p^2+\frac{5}{4}k_C^2)J\nonumber \\{} & {} \underbrace{-2\mu \int \frac{d^3 q}{(2 \pi )^3}q^2\,\frac{2 \pi \eta _q }{e^{2 \pi \eta _q}-1}}_{I}. \end{aligned}$$
(A.44)

The integral I is divergent and independent of the external momentum p. According to the PDS regularization scheme takes the form [57]

$$\begin{aligned} I=\frac{4}{3}\pi ^3\mu k_C^4\Bigg ( k_C \zeta '(-4)-\frac{\kappa }{120}\Bigg ), \end{aligned}$$
(A.45)

with \(\zeta '(-4)\approx 0.00798\). If we use the cutoff regularization scheme the integral J takes the form

$$\begin{aligned} I= & {} -\frac{2\mu }{\pi }\!\int _{0}^{{\Lambda }}\!dq q^4 \frac{\eta _q}{e^{2\pi \eta _q}-1}\nonumber \\= & {} -32\pi ^3 \mu k^5_C\!\int _{\frac{2\pi k_C}{{\Lambda }}}^{\infty }\frac{dx}{x^5(e^{x}-1)}\nonumber \\= & {} -32\pi ^3 \mu k^5_C\Bigg \{\int _{0}^{\infty }\frac{dx}{x^5(e^{x}-1)}-\int _{0}^{\frac{2\pi k_C}{{\Lambda }}}\frac{dx}{x^5(e^{x}-1)}\Bigg \}\nonumber \\= & {} -32\pi ^3\mu k^5_C\Bigg \{{\Gamma }(-4)\zeta (-4)\nonumber \\{} & {} -\int _{0}^{\frac{2\pi k_C}{{\Lambda }}}dx\Bigg (\frac{1}{x^6}-\frac{1}{2x^5}+\frac{1}{12x^4}-\frac{1}{720x^2}+{\mathcal {O}}\,(x^0)\!\Bigg )\Bigg \}\nonumber \\= & {} -32\pi ^3\mu k^5_C\Bigg \{-\frac{1}{18}\pi ^2C_E \,\zeta '(-4)+\frac{1}{5}\Bigg (\frac{{\Lambda }}{2\pi k_C }\Bigg )^{\!5}\nonumber \\{} & {} -\frac{1}{8}\Bigg (\frac{ {\Lambda }}{2\pi k_C}\Bigg )^{\!4}+\frac{1}{36}\Bigg (\frac{{\Lambda }}{2\pi k_C}\Bigg )^{\!3}-\frac{1}{720}\Bigg (\frac{{\Lambda }}{2\pi k_C}\Bigg )\nonumber \\{} & {} +\,{\mathcal {O}}\,\left( \frac{2\pi k_C}{{\Lambda }}\right) \Bigg \}, \end{aligned}$$
(A.46)

where in the second line we use . Consequently, separating the integrals \(J_2\) into the finite and divergent part leads to

$$\begin{aligned} {} J^{fin}_2= & {} W_2(p)J^{fin}_0=-\frac{\mu }{2\pi }H_2(\eta _p),\end{aligned}$$
(A.47)
$$\begin{aligned} J^{div}_2= & {} W_2(p)J^{div}_0-\left( p^2+\frac{5}{4}k_C^2\right) J+I \nonumber \\= & {} p^4J^{div}_0+p^2\left( \frac{5}{4}k_C^2J^{div}_0-J\right) \nonumber \\{} & {} +\left( \frac{1}{4}k_C^4J^{div}_0-\frac{5}{4}k_C^2J+I\right) . \end{aligned}$$
(A.48)

Thus the up-to-NLO EFT scattering amplitude for D waves is written as

$$\begin{aligned} T^{[\xi ]}_{CS}= & {} -\frac{2\pi }{\mu }\frac{C_{0}^2(\eta _p)W_{2}(\eta _p)}{(\frac{10\pi {\Delta }^{[\xi ]}}{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu }+\frac{2\pi }{\mu }(\frac{1}{4}k_C^4J^{div}_0-\frac{5}{4}k_C^2J+I)-\frac{1}{2}(\frac{10\pi }{\eta ^{[\xi ]}g^{[\xi ]^2}\!\mu ^2}+\frac{2\pi }{\mu }(\frac{5}{4}k_C^2J^{div}_0-J)p^2-\frac{1}{4}(\!\frac{10\pi h^{[\xi ]}}{g^{[\xi ]^2}\!\mu ^3}\!+\frac{2\pi }{\mu }J^{div}_0)p^4-H_2(\eta _p)}. \end{aligned}$$
(A.49)

The function \(J_2^{div}\) has three divergences, momentum independent, momentum-squared and momentum-cubed which are absorbed by the parameters \({\Delta }^{[\xi ]}\), \(g^{[\xi ]}\) and \(h^{[\xi ]}\) via introducing the renormalized parameters \({\Delta }_R^{[\xi ]}\), \(g_R^{[\xi ]}\) and \(h_R^{[\xi ]}\) as

$$\begin{aligned} {} {\Delta }_{\!R}^{[\xi ]}= & {} \frac{{\Delta }^{[\xi ]}+\frac{1}{5}\eta ^{[\xi ]}g^{[\xi ]^2}\mu \left( \frac{1}{4}k_C^4J^{div}_0-\frac{5}{4}k_C^2J+I\right) }{1+\frac{1}{5}\eta ^{[\xi ]}g^{[\xi ]^2}\mu \left( \frac{5}{4}k_C^2J^{div}_0-J\right) }, \nonumber \\\end{aligned}$$
(A.50)
$$\begin{aligned} \frac{1}{g_R^{[\xi ]^2}}= & {} \frac{1}{g^{[\xi ]^2}}+\frac{1}{5}\eta ^{[\xi ]}\mu \left( \frac{5}{4}k_C^2J^{div}_0-J\right) , \end{aligned}$$
(A.51)
$$\begin{aligned} h_{\!R}^{[\xi ]}= & {} \frac{h^{[\xi ]}+\frac{1}{5}g^{[\xi ]^2}\mu J_0^{div}}{1+\frac{1}{5}\eta ^{[\xi ]}g^{[\xi ]^2}\mu \left( \frac{5}{4}k_C^2J^{div}_0-J\right) }. \end{aligned}$$
(A.52)

Finally, the Coulomb-subtracted EFT scattering amplitude for all possible D waves are written as

$$\begin{aligned}{} & {} T^{[\xi ]}_{CS}=\nonumber \\ {}{} & {} -\frac{2\pi }{\mu }\frac{ C_0^2(\eta _p)W_2(p)}{\frac{10\pi {\Delta }_{\!R}^{[\xi ]}}{\eta ^{[\xi ]}g_{\!R}^{[\xi ]^2}\!\mu }-\frac{1}{2}\left( \frac{10\pi }{\eta ^{[\xi ]}g_{\!R}^{[\xi ]^2}\!\mu ^2}\right) p^2-\frac{1}{4}\left( \frac{10\pi h_{\!R}^{[\xi ]}}{g_{\!R}^{[\xi ]^2}\!\mu ^3}\right) p^4-H_2(\eta _p)}.\nonumber \\ \end{aligned}$$
(A.53)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, F., Radin, M. & Arani, M.M. Low-energy deuteron–alpha elastic scattering in cluster effective field theory. Eur. Phys. J. A 59, 20 (2023). https://doi.org/10.1140/epja/s10050-023-00923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00923-x

Navigation