In recent years, the impact of strong magnetic fields on the strongly interacting matter phase diagram has been a very active field of research with important developments.

The presence of these strong magnetic fields modifies the dynamics of quarks, gluons and hadrons and is expected to have an enormous influence over all regions of the phase diagram: from the first stages of the Universe to the physics of neutron stars and the quark gluon plasma. As for the phase diagram in itself, one expects an impact on the chiral transition (and the respective Critical End Point location) as well as on the deconfinement transition.

From the theoretical point of view, ab-initio theory (lattice QCD calculations) together with the use of phenomenological models of QCD (including mean-field as well as beyond mean-field approximations such as the functional renormalization group and Dyson-Schwinger equations or holographic QCD models) have been improving our understanding of how matter behaves under extreme conditions at non-zero temperature and/or density in the presence of such external magnetic fields. An important achievement was the investigation of inverse magnetic catalysis, which has been established by lattice QCD calculations and may rule out too simplistic mean field models of the QCD phase diagram. More evolved models, however, continue to play a very relevant role in our understanding of effects from strong magnetic fields on compact star structure (magnetars) and on heavy ion collision phenomenology (including the chiral magnetic effect) that may help to uncover the response of the QCD phase diagram to strong magnetic fields.

The topical issue at hand provides a number of review articles for relevant topics in this field as well as research articles representing current progress, which we hope will be useful for the field.

Pedro Costa, Débora Peres Menezes, Vladimir Skokov and Carsten Urbach

Guest Editors

1 Table of contents

1.1 Review Articles

  1. 1.

    Mapping the electromagnetic fields of heavy-ion collisions with the Breit-Wheeler process

    (J. D. Brandenburg, W. Zha and Z. Xu ) [1]

  2. 2.

    Recent progresses on QCD phases in a strong magnetic field: views from Nambu-Jona-Lasinio model

    (G. Cao) [2]

  3. 3.

    Structure of ultra-magnetised neutron stars

    (D. Chatterjee, J. Novak and M. Oertel) [3]

  4. 4.

    Holographic QCD and magnetic fields

    (U. Gürsoy) [4]

  5. 5.

    QCD phase diagram in a magnetized medium from the chiral symmetry perspective: the linear sigma model with quarks and the Nambu-Jona-Lasinio model effective descriptions

    (A. Ayala, L. A. Hernández, M. Loewe and C. Villavicencio) [5]

  6. 6.

    A review of quarkonia under strong magnetic fields

    (S. Iwasaki, M. Oka and K. Suzuki) [6]

  7. 7.

    Overview of external electromagnetism and rotation in lattice QCD

    (A. Yamamoto) [7]

  8. 8.

    QCD phase diagram in a constant magnetic background - Inverse magnetic catalysis: where models meet the lattice

    (J. O. Andersen) [8]

1.2 Research Articles

  1. 1.

    Neutral and charged mesons in magnetic fields - A resonance gas in a non-relativistic quark model

    (T. Kojo) [9]

  2. 2.

    Static magnetic susceptibility in finite-density SU(2) lattice gauge theory

    (P. V. Buividovich, D. Smith and L. von Smekal ) [10]

  3. 3.

    Nambu-Jona-Lasinio SU(3) model constrained by lattice QCD: thermomagnetic effects in the magnetization

    (W. R. Tavares, R. L. S. Farias, S. S. Avancini, V. S. Timóteo, M. B. Pinto and G. Krein ) [11]

  4. 4.

    Crust-core transition of a neutron star: effect of the temperature under strong magnetic fields

    (M. Ferreira, A. Rabhi and C. Providência) [12]

  5. 5.

    Manipulating strong electromagnetic fields with the average transverse momentum of relativistic nuclear collisions

    (G. Giacalone and C. Shen) [13]

  6. 6.

    Effects of strong magnetic fields on the hadron-quark deconfinement transition

    (B. C. T. Backes, K. D. Marquezb and D. P. Menezes ) [14]

  7. 7.

    Gradient expansion technique for inhomogeneous, magnetized quark matter

    (F. Anzuini and A. Melatos) [15]

  8. 8.

    Delta baryons in neutron-star matter under strong magnetic fields

    (V. Dexheimer, K. D. Marquez and D. P. Menezes) [16]

  9. 9.

    Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field

    (H.-T. Ding, S.-T. Li, Q. Shi and X.-D. Wang) [17]

  10. 10.

    Chiral magnetic properties of QCD phase-diagram

    (A. Nasser Tawfik and A. M. Diab) [18]

  11. 11.

    Strong magnetic fields: neutron stars with an extended inner crust

    (H. Pais, B. Bertolino, J. Fang, X. Wang and C. Providência) [19]

  12. 12.

    Effects of the anomalous magnetic moments of the quarks on the neutral pion properties within a SU(2) Nambu-Jona Lasinio model

    (R. M. Aguirre) [20]

  13. 13.

    A quenched 2-flavour Einstein-Maxwell-Dilaton gauge-gravity model

    (D. Dudal, A. Hajilou and S. Mahapatra) [21]

  14. 14.

    Cold magnetized quark matter at finite density in a nonlocal chiral quark model

    (S. A. Ferraris, D. Gómez Dumm, A. G. Grunfeld and N. N. Scoccola) [22]

  15. 15.

    Phase diagram for strongly interacting matter in the presence of a magnetic field using the Polyakov Nambu-Jona-Lasinio model with magnetic field dependent coupling strengths

    (J. Moreira, P. Costa and T. E. Restrepo) [23]

  16. 16.

    Effects of quark anomalous magnetic moment on the thermodynamical properties and mesonic excitations of magnetized hot and dense matter in PNJL model

    (N. Chaudhuri, S. Ghosh, S. Sarkar and P. Roy) [24]

  17. 17.

    Driving chiral phase transition with ring diagram (P. M. Lo, M. Szymański, K. Redlich and C. Sasaki) [25]