Skip to main content
Log in

Calculation of the fission fragment characteristics in the three-body model of binary fission

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The fissioning scission system in the model consists of two heavy fragments and \(\alpha \)-particle between them. The \(\alpha \)-particle has its origin in the neck nucleons. The yield of fission fragments in the model is linked to the number of states over the barrier of the saddle point, which is between the contacting and well-separated fission fragments. The quadrupole deformations of heavy fragments are taken into account in the model. The correlation between the values of the equilibrium quadrupole deformation parameter of the fragments and the yield of these fragments is shown. The experimental yields of fragment mass and charge distributions for the neutron-induced fission of 30 actinide nuclei are well described in the model. The values of the average total kinetic energy for the neutron-induced fission of considered nuclei are well agreed with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The experimental data used in the article are published and presented in the cited literature.]

References

  1. R. Vandenbosch, J.R. Huizenga, Nuclear fission (Academic Press, New York, 1973)

    Google Scholar 

  2. A. C. Wahl, At. Data Nucl. Data Tabl. 39, l (1988)

  3. U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  4. C. Wagemans, The nuclear fission process (CRC Press, Boca Raton, 1991)

    Google Scholar 

  5. D.G. Madland, Nucl. Phys. A 772, 113 (2006)

    Article  ADS  Google Scholar 

  6. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  7. P. Fong, Phys. Rev. 102, 434 (1956)

    Article  ADS  Google Scholar 

  8. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  9. M.C. Duijvestijn, A.J. Koning, F.-J. Hambsch, Phys. Rev. C 64, 014607 (2001)

    Article  ADS  Google Scholar 

  10. H. Pasca, A.V. Andreev, G.G. Adamian, N.V. Antonenko, Y. Kim, Phys. Rev. C 93, 054602 (2016)

    Article  ADS  Google Scholar 

  11. V.Yu. Denisov, T.O. Margitych, IYu. Sedykh, Nucl. Phys. A 958, 101 (2017)

  12. V.Yu. Denisov, I.Yu. Sedykh, Nucl. Phys. A 963, 15 (2017)

  13. J.-F. Lemaitre, S. Goriely, S. Hilaire, J.-L. Sida, Phys. Rev. C 99, 034612 (2019)

    Article  ADS  Google Scholar 

  14. V.Yu. Denisov, I.Yu. Sedykh, Eur. Phys. J. A 57, 129 (2021)

  15. P. Moller, J. Randrup, A. Iwamoto, T. Ichikawa, Phys. Rev. C 90, 014601 (2014)

    Article  ADS  Google Scholar 

  16. M.R. Mumpower, P. Jaffke, M. Verriere, J. Randrup, Phys. Rev. C 101, 054607 (2020)

    Article  ADS  Google Scholar 

  17. P. Moller, J. Randrup, Phys. Rev. C 91, 044316 (2015)

    Article  ADS  Google Scholar 

  18. G.D. Adeev, P.N. Nadtochy, Phys. At. Nucl. 66, 618 (2003)

    Article  Google Scholar 

  19. G.D. Adeev, A.V. Karpov, P.N. Nadtochy, D.V. Vanin, Fiz. Elem. Chastits At. Yadra 36, 712 (2005)

    Google Scholar 

  20. G. D. Adeev, A. V. Karpov, P. N. Nadtochy, D. V. Vanin, Phys. Part. Nucl. 36, 378 (2005) (Eng. transl.)

  21. K. Mazurek, C. Schmitt, P.N. Nadtochy, Phys. Rev. C 91, 041603 (2015)

    Article  ADS  Google Scholar 

  22. M.D. Usang, F.A. Ivanyuk, C. Ishizuka, S. Chiba, Phys. Rev. C 96, 064617 (2017)

    Article  ADS  Google Scholar 

  23. H. Eslamizadeh, H. Raanaei, Phys. Lett. B 783, 163 (2018)

    Article  ADS  Google Scholar 

  24. C. Simenel, A.S. Umar, Phys. Rev. C 89, 031601(R) (2014)

    Article  ADS  Google Scholar 

  25. K. Pomorski, A. Dobrowolski, R. Han, B. Nerlo-Pomorska, M. Warda, Z. Xiao, Phys. Rev. C 101, 064602 (2020)

    Article  ADS  Google Scholar 

  26. G. Scamps, C. Simenel, Nat. (Lond.) 564, 382 (2018)

    Article  ADS  Google Scholar 

  27. A. Sandulescu et al., Phys. Rev. C 54, 258 (1996)

    Article  ADS  Google Scholar 

  28. K.P. Santhosh, A. Cyriac, S. Krishnan, Nucl. Phys. A 949, 8 (2016)

    Article  ADS  Google Scholar 

  29. P.M. Kaldiani, Phys. Scr. 95, 075306 (2020)

    Article  ADS  Google Scholar 

  30. W. Younes, D. M. Gogny, J.-F. Berger, A microscopic theory of fission dynamics based on the generator coordinate method, Vol. 950 (Springer, 2019)

  31. M. Bender et al., J. Phys. G 47, 113002 (2020)

    Article  Google Scholar 

  32. N. Schunck, D. Regnier, Prog. Part. Nucl. Phys. 125, 103963 (2022)

    Article  Google Scholar 

  33. K.T.R. Davies, R.A. Managant, J.R. Nix, A.J. Sierk, Phys. Rev. C 18, 1890 (1977)

    Article  ADS  Google Scholar 

  34. V. Manea, A. Tudora, Ann. Nucl. Energy 38, 72 (2011)

    Article  Google Scholar 

  35. Z.X. Ren, D. Vretenar, T. Niksic, P.W. Zhao, J. Zhao, J. Meng, Phys. Rev. Lett. 128, 172501 (2022)

    Article  ADS  Google Scholar 

  36. Yu.N. Kopatch, M. Mutterer, D. Schwalm, P. Thirolf, F. Gonnenwein, Phys. Rev. 65, 044614 (2002)

    ADS  Google Scholar 

  37. M. Mutterer, F. Gonnenwein, Romanian Rep. Phys. 59, 533 (2007)

    Google Scholar 

  38. V. A. Rubchenya, S. G. Yavshits, Z. Phys. A 329, 217 (1988)

  39. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  40. V.Yu. Denisov, N.A. Pilipenko, I.Yu. Sedykh, Phys. Rev. C 95, 014605 (2017)

  41. NuDat 2.8, https://www.nndc.bnl.gov/nudat2/

  42. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  43. R. Capote, et al., Nucl. Data Sheets, 110, 3107 (2009). http://www-nds.iaea.org/RIPL-3/

  44. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Yad. Fiz. 21, 485 (1975).

  45. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  46. G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  47. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  48. D. A. Varshalovich, A. N. Moskalev, V. K. Khersonsky, Quantum theory of angular momentum: irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj Symbols (WorldscScientificSingapore, 1988)

  49. V.Yu. Denisov, N.A. Pilipenko, Phys. Rev. C 76, 014602 (2007)

  50. M. Ismail, I.A.M. Abdul-Magead, Nucl. Phys. A 922, 168 (2012)

    Article  ADS  Google Scholar 

  51. B.V. Derjaguin, Kolloid-Zeitschrift 69, 155 (1934)

    Article  Google Scholar 

  52. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  53. VYu. Denisov, Phys. Rev. C 91, 024603 (2015)

    Article  ADS  Google Scholar 

  54. V.Yu. Denisov, H. Ikezoe, Phys. Rev. C 72, 064613 (2005)

  55. V.Yu. Denisov, A.A. Khudenko, At. Data Nucl. Data Tabl. 95, 815 (2009)

  56. V.Yu. Denisov, A.A. Khudenko, At. Data Nucl. Data Tabl. 97, 187 (2011)

  57. V.Yu. Denisov, O.I. Davidovskaya, I.Yu. Sedykh, Phys. Rev. C 92, 014602 (2015)

  58. A. Bohr, B. Mottelson, Nuclear structure, vol. 2 (W. A. Benjamin Inc., New York, Amsterdam, 1974)

    MATH  Google Scholar 

  59. Q. Song, L. Zhu, J. Su, H. Guo, H. Guo, https://arxiv.org/abs/2208.11815v1

  60. P. Moller, A. J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tabl. (2016)

  61. N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)

    Article  ADS  Google Scholar 

  62. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302 (2013)

    Article  ADS  Google Scholar 

  63. M. Asghar et al., Nucl. Phys. A 373, 225 (1982)

    Article  ADS  Google Scholar 

  64. P. D‘hondt, et al., Ann. Nucl. Energ. 7, 367 (1980)

  65. M. Asghar et al., Nucl. Phys. A 334, 327 (1980)

    Article  ADS  Google Scholar 

  66. M. Asghar et al., Nucl. Phys. A 368, 328 (1981)

    Article  ADS  Google Scholar 

  67. V.G. Vorob’yeva et al., Yad. Fis. 19, 954 (1974)

    Google Scholar 

  68. V.G. Vorob’yeva et al., Sov. J. Nucl. Phys. 19, 489 (1974) (Eng. transl.)

  69. A. Al-Adili et al., EPJ Web Conf. 21, 08001 (2012)

    Article  Google Scholar 

  70. F.-J. Hambsch et al., Nucl. Phys. A 491, 56 (1989)

    Article  ADS  Google Scholar 

  71. A.A. Goverdovsky et al., Yad. Fiz. 56, 40 (1993)

    Google Scholar 

  72. A. A. Goverdovsky, et al., Phys. At. Nucl. 56, 1642 (1993) (Eng. transl.)

  73. N. Arena et al., Lett. Nuovo Cim. 3, 147 (1972)

    Article  ADS  Google Scholar 

  74. C. Wagemans et al., Nucl. Phys. A 369, 1 (1981)

    Article  ADS  Google Scholar 

  75. M. Asghar et al., Nucl. Phys. A 368, 319 (1981)

    Article  ADS  Google Scholar 

  76. V. G. Vorob‘yeva et al., Proc. 2 Conf on Neutron Physics, Kiev, USSR, Vol. 3, p. 270 (1973)

  77. V. G. Vorob‘yeva et al., Proc. 2 Conf on Neutron Physics, Kiev, USSR, Vol. 3, p. 270 (1973)

  78. H. Thierens et al., Phys. Rev. C 29, 498 (1984)

    Article  ADS  Google Scholar 

  79. V.G. Vorob’yeva et al., Yad. Fis. 19, 954 (1974)

    Google Scholar 

  80. V. G. Vorob’yeva, et al., Sov. J. Nucl. Phys. 19, 489 (1974) (Eng. transl.)

  81. M. Asghar et al., Nucl. Phys. A 334, 327 (1980)

    Article  ADS  Google Scholar 

  82. A. Ramaswami et al., Phys. Rev. C 16, 716 (1977)

    Article  ADS  Google Scholar 

  83. K.E. Volodin et al., Yad. Fiz. 15, 29 (1972)

    Google Scholar 

  84. K. E. Volodin, et al., Sov. J. Nucl. Phys. 15, 17 (1972) (Eng. transl.)

  85. https://www-nds.iaea.org/exfor/

Download references

Acknowledgements

The author strongly thanks the support of Professors Fabiana Gramegna, Enrico Fioretto, Giovanna Montagnoli, and Alberto Stefanini. The author thanks for the support to Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro of Istituto Nazionale di Fisica Nucleare, the National Academy of Sciences of Ukraine and Taras Shevchenko National University of Kiev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Denisov.

Additional information

Communicated by Cedric Simenel.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, V.Y. Calculation of the fission fragment characteristics in the three-body model of binary fission. Eur. Phys. J. A 58, 188 (2022). https://doi.org/10.1140/epja/s10050-022-00841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00841-4

Navigation