Skip to main content
Log in

Calculation of fission fragment characteristics for the reactions n\(_\mathrm{th}+^{235}\)U and n\(_\mathrm{14\; MeV}+^{235}\)U

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A model for a description of various fission fragment characteristics is proposed. The both nascent fission fragments consist of either the single-body or the two-body systems. The one-body fragment is a single nucleus, while the two-body fragment is the nucleus interacting with the \(\alpha \)-particle. The \(\alpha \)-particle have its origin to the neck nucleons. The yield of fission fragments in the model is linked to the number of states over the barrier of the saddle point, which is between the contacting and well-separated fission fragments. The crucial role of the three-body (nucleus-\(\alpha \)-nucleus) systems at a passing through the saddle point is shown. After passing the saddle point, the \(\alpha \)-particle is fusing with the nearest nucleus and forming the final fragment, because the distance between the nucleus and \(\alpha \)-particle is smaller the barrier distance of the \(\alpha \)-nucleus potential. As a result, the binary fission is realized in the framework of the model. If the \(\alpha \)-particle is not fusing with the any fragment than the ternary fission occurs. The mass dependencies of the fragments yield, the kinetic energy and neutron emission number emitted by fragment calculated in the model agree well with available experimental data for binary fission of \(^{235}\)U by thermal and 14 MeV neutrons. The root mean deviation between theoretical and experimental values of the decimal logarithm of nuclide yields for the fission of \(^{235}\)U by thermal and 14 MeV neutrons are 0.756 and 1.02, respectively. The values of the ground-state quadrupole deformation of neutron-rich nuclei related to the fragments are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The experimental data used in this work are presented in the corresponding references. The obtained values of the quadrupole deformations are given in Table 1.]

References

  1. O. Hahn, F. Strassmann, Naturwissenschaften 27, 11 (1939)

    Article  ADS  Google Scholar 

  2. G.N. Flyorov, K.A. Petrzhak, Phys. Rev. 58, 89 (1940)

    Article  ADS  Google Scholar 

  3. G.N. Flyorov, K.A. Petrzhak, J. Phys. (USSR) 3, 275 (1940)

    Google Scholar 

  4. G.N. Flyorov, K.A. Petrzhak, Uspekhi Fizicheskikh Nauk 25, 171 (1941). (in Russian)

    Article  Google Scholar 

  5. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  6. P. Fong, Phys. Rev. 102, 434 (1956)

    Article  ADS  Google Scholar 

  7. V.F. Apalin, Y.N. Gritsyuk, I.E. Kutikov, V.I. Lebedev, L.A. Mikaelian, Nucl. Phys. 71, 553 (1965)

    Article  Google Scholar 

  8. V.M. Strutinsky, N.Y. Lyashchenko, N.A. Popov, Nucl. Phys. 46, 639 (1963)

    Article  Google Scholar 

  9. V.M. Strutinsky, Sov. J. Nucl. Phys. 3, 449 (1966)

    Google Scholar 

  10. V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)

    Article  ADS  Google Scholar 

  11. V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968)

    Article  ADS  Google Scholar 

  12. S. Bjornholm, V.M. Strutinsky, Nucl. Phys. 136, 1 (1969)

    Article  Google Scholar 

  13. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972)

    Article  ADS  Google Scholar 

  14. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)

    Google Scholar 

  15. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  16. K.T.R. Davies, R.A. Managant, J.R. Nix, A.J. Sierk, Phys. Rev. C 16, 1890 (1977)

    Article  ADS  Google Scholar 

  17. A.J. Sierk, Phys. Rev. C 33, 2039 (1986)

    Article  ADS  Google Scholar 

  18. A. C. Wahl, At. Data Nucl. Data Tabl. 39, l (1988)

  19. V.A. Rubchenya, S.G. Yavshits, Z. Phys. A 329, 217 (1988)

    ADS  Google Scholar 

  20. U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  21. C. Wagemans, The Nuclear Fission Process (CRC Press, Boca Raton, 1991)

    Google Scholar 

  22. K. Nishio, Y. Nakagome, H. Yamamoto, I. Kimura, I. Kann, Nucl. Phys. A 637, 601 (1998)

    Article  Google Scholar 

  23. G. Royer, F. Haddad, J. Phys. G 21, 339 (1995)

    Article  ADS  Google Scholar 

  24. A. Sandulescu, A. Florescu, F. Carstoiu, W. Greiner, J.H. Hamilton, A.V. Ramayya, B.R.S. Babu, Phys. Rev. C 54, 258 (1996)

    Article  ADS  Google Scholar 

  25. M.G. Itkis, A.Y. Rusanov, Phys. Part. Nucl. 29, 160 (1998)

    Article  Google Scholar 

  26. P. Frobrich, I.I. Gontchar, Phys. Rep. 292, 131 (1998)

    Article  ADS  Google Scholar 

  27. S. Oberstedt, F.-J. Hambsch, F. Vives, Nucl. Phys. A 644, 289 (1998)

    Article  ADS  Google Scholar 

  28. I.N. Vishnevsky, V.Y. Denisov, V.A. Zheltonozhsky, S.V. Reshitko, L.V. Sadovnikov, N.V. Strilchuk, Phys. At. Nucl. 61, 1452 (1998)

    Google Scholar 

  29. M.C. Duijvestijn, A.J. Koning, F.-J. Hambsch, Phys. Rev. C 64, 014607 (2001)

    Article  ADS  Google Scholar 

  30. Y.N. Kopatch, M. Mutterer, D. Schwalm, P. Thirolf, F. Gonnenwein, Phys. Rev. 65, 044614 (2002)

    ADS  Google Scholar 

  31. G.D. Adeev, P.N. Nadtochy, Phys. At. Nucl. 66, 618 (2003)

    Article  Google Scholar 

  32. Sh. Zeynalov, et al., Int. Sem. Interaction of Neutrons with Nuclei (ISINN-13), 351 (2006)

  33. D.G. Madland, Nucl. Phys. A 772, 113 (2006)

    Article  ADS  Google Scholar 

  34. M. Mutterer, F. Gonnenwein, Romanian Rep. Phys. 59, 533 (2007)

    Google Scholar 

  35. N. Dubray, H. Goutte, J.P. Delaroche, Phys. Rev. C 77, 014310 (2008)

    Article  ADS  Google Scholar 

  36. S.I. Mulgin, S.V. Zhdanov, N.A. Kondratiev, K.V. Kovalchuk, A.Y. Rusanov, Nucl. Phys. A 824, 1 (2009)

    Article  ADS  Google Scholar 

  37. A.S. Vorobyev et al., EPJ Web. Conf. 8, 03004 (2010)

    Article  Google Scholar 

  38. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  39. V. Manea, A. Tudora, Ann. Nucl. Energy 38, 72 (2011)

    Article  Google Scholar 

  40. H.J. Krappe, K. Pomorski, Theory of Nuclear Fission (Springer, Berlin, 2012)

    Book  Google Scholar 

  41. V.A. Rubchenya, J. Aysto, Eur. Phys. J. A 48, 44 (2012)

    Article  ADS  Google Scholar 

  42. G. Royer, M. Jaffre, D. Moreau, Phys. Rev. C 86, 044326 (2012)

    Article  ADS  Google Scholar 

  43. V.A. Rubchenya, D. Gorelov, A. Jokinen, H. Penttila, J. Aysto, EPJ Web Conf. 62, 06003 (2013)

    Article  Google Scholar 

  44. V. Yu. Denisov and V. A. Plujko, Problems of physics of atomic nucleus and nuclear reactions (Publishing and Polygraphic Centre ”The University of Kyiv”, Kiev, 2013) (in Russian)

  45. H. Eslamizadeh, H. Raanaei, Ann. Nucl. Energy 51, 252 (2013)

    Article  Google Scholar 

  46. P.N. Nadtochy, E.G. Ryabov, A.E. Gegechkori, Y.A. Anischenko, G.D. Adeev, Phys. Rev. C 89, 014616 (2014)

    Article  ADS  Google Scholar 

  47. P. Moller, J. Randrup, A. Iwamoto, T. Ichikawa, Phys. Rev. C 90, 014601 (2014)

    Article  ADS  Google Scholar 

  48. C. Simenel, A.S. Umar, Phys. Rev. C 89, 031601(R) (2014)

    Article  ADS  Google Scholar 

  49. F.A. Ivanyuk, S. Chiba, Y. Aritomo, Phys. Rev. C 90, 054607 (2014)

    Article  ADS  Google Scholar 

  50. K. Mazurek, C. Schmitt, P.N. Nadtochy, Phys. Rev. C 91, 041603 (2015)

    Article  ADS  Google Scholar 

  51. P. Moller, J. Randrup, Phys. Rev. C 91, 044316 (2015)

    Article  ADS  Google Scholar 

  52. O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51, 177 (2015)

    Article  ADS  Google Scholar 

  53. N. Schunck, L.M. Robledo, Rep. Prog. Phys. 79, 116301 (2016)

    Article  ADS  Google Scholar 

  54. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  55. K.P. Santhosh, A. Cyriac, S. Krishnan, Nucl. Phys. A 949, 8 (2016)

    Article  ADS  Google Scholar 

  56. H. Pasca, A.V. Andreev, G.G. Adamian, N.V. Antonenko, Y. Kim, Phys. Rev. C 93, 054602 (2016)

    Article  ADS  Google Scholar 

  57. K. Mazurek, P.N. Nadtochy, E.G. Ryabov, G.D. Adeev, Eur. Phys. J. A 53, 79 (2017)

    Article  ADS  Google Scholar 

  58. A.J. Sierk, Phys. Rev. C 96, 034603 (2017)

    Article  ADS  Google Scholar 

  59. P. Moller, C. Schmitt, Eur. Phys. J. A 53, 7 (2017)

    Article  ADS  Google Scholar 

  60. A. Tudora, F.-J. Hambsch, Eur. Phys. J. A 53, 159 (2017)

    Article  ADS  Google Scholar 

  61. V.Y. Denisov, N.A. Pilipenko, I.Y. Sedykh, Phys. Rev. C 95, 014605 (2017)

    Article  ADS  Google Scholar 

  62. S. Zeynalov, P. Sedyshev, V. Shvetsov, O. Sidorova, EPJ Web Conf. 146, 04022 (2017)

    Article  Google Scholar 

  63. V.Y. Denisov, T.O. Margitych, I.Y. Sedykh, Nucl. Phys. A 958, 101 (2017)

    Article  ADS  Google Scholar 

  64. V. Y. Denisov, I. Y. Sedykh, Nucl. Phys. A 963, 15 (2017)

  65. R. Yanez, J. King, J. S. Barrett, W. Loveland, N. Fotiades, H.Y. Lee, Nucl. Phys. A 970, 65 (2018)

  66. A.N. Andreyev, K. Nishio, K.H. Schmidt, Rept. Prog. Phys. 81, 016301 (2018)

  67. H. Eslamizadeh, M. Soltani, Eur. Phys. J. A 54, 166 (2018)

    Article  ADS  Google Scholar 

  68. V. Yu. Denisov, I. Y. Sedykh, Eur. Phys. J. A 54, 231 (2018)

  69. J.-F. Lemaitre, S. Goriely, S. Hilaire, J.-L. Sida, Phys. Rev. C 99, 034612 (2019)

    Article  ADS  Google Scholar 

  70. M.R. Pahlavani, M. Joharifard, Phys. Rev. C 99, 044601 (2019)

    Article  ADS  Google Scholar 

  71. V.Y. Denisov, O.A. Belyanovska, V.P. Khomenkov, I.Y. Sedykh, K.M. Sukhyy, Chin. Phys. C 43, 014101 (2019)

    Article  ADS  Google Scholar 

  72. C. Karthikraj, Z. Ren, Phys. Rev. C 101, 014603 (2020)

    Article  ADS  Google Scholar 

  73. M.R. Mumpower, P. Jaffke, M. Verriere, J. Randrup, Phys. Rev. C 101, 054607 (2020)

    Article  ADS  Google Scholar 

  74. K. Pomorski, A. Dobrowolski, R. Han, B. Nerlo-Pomorska, M. Warda, Z. Xiao, Phys. Rev. C 101, 064602 (2020)

    Article  ADS  Google Scholar 

  75. P.M. Kaldiani, Phys. Scr. 95, 075306 (2020)

    Article  ADS  Google Scholar 

  76. P.M. Kaldiani, Phys. Rev. C 102, 044612 (2020)

    Article  ADS  Google Scholar 

  77. M. Bender et al., J. Phys. G 47, 113002 (2020)

    Article  Google Scholar 

  78. P. Talou, I. Stetcu, P. Jaffke, M.E. Rising, A.E. Lovell, T. Kawano, arXiv:2011.10444 [nucl-th] 20 Nov 2020

  79. K.-H. Schmidt, et al., arXiv:2012.08199v1 [nucl-ex] 15 Dec 2020

  80. X. Sun, et al., arXiv:2012.13281v1 [nucl-ex] 24 Dec 2020

  81. V. Y. Denisov, I. Yu. Sedykh, Chin. Phys. C 45, 044106 (2021)

  82. G. Audi, F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  83. R. Capote, et al., Nuclear Data Sheets, 110, 3107 (2009). http://www-nds.iaea.org/RIPL-3/

  84. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Yad. Fiz. 21, 485 (1975). (in Russian)

    Google Scholar 

  85. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  86. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  87. V. Y. Denisov, N. A. Pilipenko, Phys. Rev. C 76, 014602 (2007)

  88. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonsky, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols (World scientific, Singapore, 1988)

    Book  Google Scholar 

  89. M. Ismail, I.A.M. Abdul-Magead, Nucl. Phys. A 922, 168 (2012)

    Article  ADS  Google Scholar 

  90. B.V. Derjaguin, Kolloid-Zeitschrift 69, 155 (1934)

    Article  Google Scholar 

  91. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  92. V.Y. Denisov, Phys. Rev. C 91, 024603 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  93. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)

    Article  ADS  Google Scholar 

  94. V.Y. Denisov, Phys. Lett. B 526, 315 (2002)

    Article  ADS  Google Scholar 

  95. NuDat 2.8, https://www.nndc.bnl.gov/nudat2/

  96. V. Yu. Denisov, H. Ikezoe, Phys. Rev. C 72, 064613 (2005)

  97. V.Y. Denisov, A.A. Khudenko, At. Data Nucl. Data Tabl. 95, 815 (2009)

    Article  ADS  Google Scholar 

  98. V.Y. Denisov, A.A. Khudenko, At. Data Nucl. Data Tabl. 97, 187 (2011)

    Article  ADS  Google Scholar 

  99. V.Y. Denisov, O.I. Davidovskaya, I.Y. Sedykh, Phys. Rev. C 92, 014602 (2015)

    Article  ADS  Google Scholar 

  100. V.G. Neudatchin, V.I. Kukulin, V.L. Korotkikh, V.P. Korennoy, Phys. Lett. B 34, 581 (1973)

    Article  ADS  Google Scholar 

  101. P. Moller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)

    Article  ADS  Google Scholar 

  102. S. Cwiok et al., Comput. Phys. Commun. 46, 379 (1987)

    Article  ADS  Google Scholar 

  103. V.A. Chepurnov, Yad. Fiz. 6, 955 (1967)

    Google Scholar 

  104. A.T. Kruppa, B. Barmore, W. Nazarewicz, T. Vertse, Phys. Rev. Lett. 84, 4549 (2000)

    Article  ADS  Google Scholar 

  105. M. Karny et al., Phys. Lett. B 664, 52 (2008)

    Article  ADS  Google Scholar 

  106. H.J. Lipkin, Ann. Phys. N. Y. 9, 272 (1960)

    Article  ADS  Google Scholar 

  107. Y. Nogami, Phys. Rev. B 134, 313 (1964)

    Article  ADS  Google Scholar 

  108. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302 (2013)

    Article  ADS  Google Scholar 

  109. N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)

    Article  ADS  Google Scholar 

  110. P. Moller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tabl. (2016)

  111. A. Bohr, B. Mottelson, Nuclear Structure, vol. 2 (W. A. Benjamin Inc., New York, 1974)

    MATH  Google Scholar 

  112. B. Pritychenko, M. Birch, B. Singh, M. Horoi, At. Data Nucl. Data Tabl. 107, 1 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Denisov.

Additional information

Communicated by Cedric Simenel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisov, V.Y., Sedykh, I.Y. Calculation of fission fragment characteristics for the reactions n\(_\mathrm{th}+^{235}\)U and n\(_\mathrm{14\; MeV}+^{235}\)U. Eur. Phys. J. A 57, 129 (2021). https://doi.org/10.1140/epja/s10050-021-00433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00433-8

Navigation